Publications
Angeler, D., Allen, C. R., Carnaval, A., 2020: Convergence science in the Anthropocene: Navigating the known and unknown. People and Nature 2(1): 96-102, doi:10.1002/pan3.10069.
https://doi.org/10.1002/pan3.10069
Adaptive Capacity and Resilience in the New Arctic: Identifying Pathways to Equitable, Desirable Outcomes for People and Nature Through Convergence
Taylor, M. A., G. Celis, J. D. Ledman, R. Bracho, E. A. Schurr, 2020: Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost Degradation. Journal of Geophysical Research: Biogeosciences 123(9):2695-2710, doi: 10.1029/2018JG004444
https://doi.org/10.1029/2018JG004444
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost Degradation
Ward Jones, M.K., B.M. Jones, I. Nitze, M. Gessner, G. Grosse, A. Bartsch, and D. Bull, 2025: Annual and sub-seasonal dynamics of a rapidly eroding permafrost coastline along the Beaufort Sea in northern Alaska, Scientific Reports, 15, https://doi.org/10.1038/s41598-025-04753-3
https://doi.org/10.1038/s41598-025-04753-3Jones, B.M., M.Z. Kanevskiy, B. Connor, J. Peirce, B. Tracey Sr., K. Curtis, F.E. Urban, S. Wesen, Y. Shur, and C.V. Maio, 2025: Climate change and infrastructure development drive ice-rich permafrost thaw in Point Lay (Kali), Alaska, Environmental Research: Ecology, 4(3), https://doi.org/10.1088/2752-664X/adf1ac
https://doi.org/10.1088/2752-664X/adf1acCreel, R., J. Guimond, B.M. Jones, and P.P. Overduin, 2024: Permafrost thaw subsidence, sea-level rise, and erosion are transforming Alaska’s Arctic coastal zone, Proceedings of the National Academy of Sciences, 121(50), https://doi.org/10.1073/pnas.2409411121
https://doi.org/10.1073/pnas.2409411121Christian, J.E., R.M. Buzard, K.L. Spellman, H.L. Baldwin, R.C. Bogardus, J. Carlson, G. Dunham, S. Flensburg, R.J.T. Glenn, J.R. Overbeck, and C.V. Maio, 2025: Community-based monitoring: shoreline change in Southwest Alaska, Frontiers in Climate Change, 6, https://doi.org/10.3389/fclim.2024.1410329
https://doi.org/10.3389/fclim.2024.1410329Peterson, M., M. Monakhova, D. Maeroff, M. Arteaga, F.P. Anjolaoluwa, P. Frankson, L. Shaffer, P.K. Takata-Glushkoff, C. Begay, S. BurnSilver, S. Pfirman, and A. York, 2025: Preparing students and early-career researchers for ethical decision-making in community-engaged research in the Arctic, The Polar Journal, 1-24, https://doi.org/10.1080/2154896X.2025.2563477
https://doi.org/10.1080/2154896X.2025.2563477Zhang, R., J. Su, P. Dehghanian and M. Alhazmi, 2024: Deep Reinforcement Learning-Aided Pre-Positioning of Mobile Wind Turbines to Enhance Power Distribution System Resilience, 024 56th North American Power Symposium (NAPS), https://doi.org/10.1109/NAPS61145.2024.10741782
https://doi.org/10.1109/NAPS61145.2024.10741782Su, J., R. Zhang, P. Dehghanian, M.H. Kapourchali, S. Choi, and Z. Ding, 2024: Renewable-dominated mobility-as-a-service framework for resilience delivery in hydrogen-accommodated microgrids, International Journal of Electrical Power & Energy Systems, 159, https://doi.org/10.1016/j.ijepes.2024.110047
https://doi.org/10.1016/j.ijepes.2024.110047DeMichele, K., M.H. Kapourchali, C. Waigl, C.A. Richards, M. Hahn, and L. Zhao, 2025: Evaluating Lightning-Caused Wildfire Risk to Alaska’s Power Grid Infrastructure, 2025 IEEE/IAS 61st Industrial and Commercial Power Systems Technical Conference (I&CPS), https://doi.org/10.1109/ICPS64254.2025.11030377
https://doi.org/10.1109/ICPS64254.2025.11030377Wu, J., Z. Lee, J. Goes, H. do Rosario Gomes, and J. Wei, 2024: Evaluation of three contrasting models in estimating primary production from ocean color remote sensing using long-term time-series data at oceanic and coastal sites, Remote Sensing of Environment, 302, https://doi.org/10.1016/j.rse.2023.113983
https://doi.org/10.1016/j.rse.2023.113983Peel, G., V. Groeschel, J. Behnen, O. Demir, H. Hendrikse, O. Francis, and E.D. Gedikli, 2024: Navigating the New Arctic: Insights into Ship Activities, Ice Modeling, and Stakeholder Engagement in US Arctic Waters, Cold Regions Engineering 2024: Sustainable and Resilient Engineering Solutions for Changing Cold Regions, https://doi.org/10.1061/9780784485460.005
https://doi.org/10.1061/9780784485460.005Liu, H., R. Yuan, Y. Lv, X. Yang, H. Li and E. D. Gedikli, 2024: Multivariate Phase Space Warping-Based Degradation Tracking and Remaining Useful Life Prediction of Rolling Bearings, IEEE Transactions on Reliability, 73(3):1592-1605, https://doi.org/10.1109/TR.2024.3361717
https://doi.org/10.1109/TR.2024.3361717Liu, H., R. Yuan, Y. Lv, H. Li, E. D. Gedikli, and G. Song, 2022: Remaining Useful Life Prediction of Rolling Bearings Based on Segmented Relative Phase Space Warping and Particle Filter, IEEE Transactions on Instrumentation and Measurement, 71, https://doi.org/10.1109/TIM.2022.3214623
https://doi.org/10.1109/TIM.2022.3214623Li, H., E.D. Gedikli, Z. Cheng, J. Sawamura, and R. Lubbad, 2024: Wave Loads on a Hollow Circular Cylinder in Open and Icy Waters, Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology, 1, https://doi.org/10.1115/OMAE2024-123555
https://doi.org/10.1115/OMAE2024-123555Witteveen, N.H., A. Blaus, M.F. Raczka, C. Herrick, M. Palace, M.N. Nascimento, E.E. van Loon, W.D. Gosing, M.B. Bush, and C.N.H. McMichael, 2024: Quantifying local-scale changes in Amazonian forest cover using phytoliths, Frontiers of Biogeography, 16(1), https://doi.org/10.21425/F5FBG62254
https://doi.org/10.21425/F5FBG62254Waling, A., A. Herrington, K. Duderstadt, J. Dibb, and E. Burakowski, 2024: Using variable-resolution grids to model precipitation from atmospheric rivers around the Greenland ice sheet, Weather and Climate Dynamics, 5(3), https://doi.org/10.5194/wcd-5-1117-2024
https://doi.org/10.5194/wcd-5-1117-2024Rocci, K.S., et. al., 2024: Aligning theoretical and empirical representations of soil carbon-to-nitrogen stoichiometry with process-based terrestrial biogeochemistry models, Soil Biology and Biochemistry, 189, https://doi.org/10.1016/j.soilbio.2023.109272
https://doi.org/10.1016/j.soilbio.2023.109272O'Brien, J.M., N. Blais, C. Butler, N. White, A. Bustead, C. Figler, M. Wells, G. Anderson, A. Yuhas, and J.G. Ernakovich, 2024: Ten “simple” rules for non-Indigenous researchers engaging Indigenous communities in Arctic research, PLOS Computational Biology, 20(6), https://doi.org/10.1371/journal.pcbi.1012093
https://doi.org/10.1371/journal.pcbi.1012093Miksis-Olds, J.L. M.A. Ainslie, H.B. Blair, T. Butkiewicz, E.L. Hazen, K.DS Heaney, A.P. Lyons, B.S. Martin, and J.D. Warren, 2024: FEATURE ARTICLE • Overview of the Atlantic Deepwater Ecosystem Observatory Network, Oceanography, 38(2):40-51, https://doi.org/10.5670/oceanog.2025.301
https://doi.org/10.5670/oceanog.2025.301Blause, A., C.N.H. McMichael, M.F. Raczka, C. Herrick, M. Palace, N.H. Witteveen, M.N. Nascimento, and M.B. Bush, 2023: Amazonian pollen assemblages reflect biogeographic gradients and forest cover, Journal of Biogeography, 50(11):1926-1938, https://doi.org/10.1111/jbi.14701
https://doi.org/10.1111/jbi.14701Ward Jones, M.K., T. Schwoerer, G.M. Gannon, B.M. Jones, M.Z. Kanevskiy, I. Sutton, B. St. Pierre, C. St. Pierre, J. Russell, and D. Russell, 2022: Climate-driven expansion of northern agriculture must consider permafrost, Nature Climate Change, 12, https://doi.org/10.1038/s41558-022-01436-z
https://doi.org/10.1038/s41558-022-01436-zGarbis, Z., T. Heleniak, G. Poelzer, C. Söderberg, and R. Orttung, 2024: “The ketchup effect”: Challenges in reconciling growth and justice in Northern Sweden's green transition, Energy Research & Social Science, 112, https://doi.org/10.1016/j.erss.2024.103537
https://doi.org/10.1016/j.erss.2024.103537Rozanova-Smith, M., and A.N. Petrov, 2025: “I Feel Like a Lot of Times Women Are the Ones Who Are Problem-Solving for All the People That They Know”: The Gendered Impacts of the Pandemic on Women in Alaska, Social Sciences, 14(8), https://doi.org/10.3390/socsci14080498
https://doi.org/10.3390/socsci14080498Ahmed, F., R. Ahmed, G. Poelzer, C. Söderberg, O. Zapata, and E. Guilmette, 2025: Exploring energy transition narratives through mayoral insights using artificial intelligence, Energy Research & Social Science, 120, https://doi.org/10.1016/j.erss.2024.103902
https://doi.org/10.1016/j.erss.2024.103902Brose, A., M. Perra, A. Gunn, and E. Gurarie, 2024: Fate of the Caribou: Studying Caribou and Climate, with Communities, Xàgots’eèhk’ò˛ Journal, 2(2)
fateofthecaribou_nsf.pdf https://www.researchgate.net/publication/394790565_Fate_of_the_Caribou_Studying_Caribou_and_Climate_with_Communities/link/68a6a4327984e374acea4ceb/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19Lok, S., T.N.H. Lau, B . Trost, A.H.Y. Tong, T. Paton, R.F. Wintle, M.D. Engstrom, A. Gunn, and S.W. Scherer, 2024: Chromosomal-level reference genome assembly of muskox (Ovibos moschatus) from Banks Island in the Canadian Arctic, a resource for conservation genomics, Scientific Reports, 14, https://doi.org/10.1038/s41598-024-67270-9
https://doi.org/10.1038/s41598-024-67270-9Orndahl, K.M., T.W. Bentzen, L.T. Berner, L.P.W. Ehlers, M. Hebblewhite, J.D. Herriges, K. Joly, M.J. Macander, E.C. Palm, M.J. Suitor, and S.J. Goetz, 2025: Shifting and expanding ranges of a sub-Arctic caribou herd and associated changes in vegetation, Ecological Applications, 35(4), https://doi.org/10.1002/eap.70038
https://doi.org/10.1002/eap.70038Fagan, W.F., C. Saborio, T.D. Hoffman, E. Gurarie, R.S. Cantrell, and C. Cosner, 2022: What’s in a resource gradient? Comparing alternative cues for foraging in dynamic environments via movement, perception, and memory, Theoretical Ecology, 15, https://doi.org/10.1007/s12080-022-00542-0
https://doi.org/10.1007/s12080-022-00542-0Ehlers, L., E. Palm, J. Herriges, T. Bentzen, M. Suitor, K. Joly, J. Millspaugh, P. Donnelly, J. gross, J. Wells, B. Larue, and M. Hebblewhite, 2024: A taste of space: Remote animal observations and discrete-choice models provide new insights into foraging and density dynamics for a large subarctic herbivore, Journal of Animal Ecology, 93(7):891-905, https://doi.org/10.1111/1365-2656.14109
https://doi.org/10.1111/1365-2656.14109Orndahl, K.M., M.J. Macander, L.T. Berner, and S.J. Goetz, 2022: Plant functional type aboveground biomass change within Alaska and northwest Canada mapped using a 35-year satellite time series from 1985 to 2020, Environmental Research Letters, 17(11), https://doi.org/10.1088/1748-9326/ac9d50
https://doi.org/10.1088/1748-9326/ac9d50Orndahl, K.M., L.P.W. Ehlers, J.D. Herriges, R.E. Pernick, M. Hebblewhite, and S.J. Goetz, 2022: Mapping tundra ecosystem plant functional type cover, height, and aboveground biomass in Alaska and northwest Canada using unmanned aerial vehicles, Arctic Science, 8(4):1165-1180, https://doi.org/10.1139/as-2021-0044
https://doi.org/10.1139/as-2021-0044Geyman, B.M., C.P. Thackray, D.J. Jacob, and E.M. Sunderland, 2023: Impacts of Volcanic Emissions on the Global Biogeochemical Mercury Cycle: Insights From Satellite Observations and Chemical Transport Modeling, Geophysical Research Letters, 50(21), https://doi.org/10.1029/2023GL104667
https://doi.org/10.1029/2023GL104667Hauptmann, A.L., S. Maroney, J.B. Perea, and M.L. Marco, 2025: Growing microbiology literacy through interdisciplinary approaches to food fermentations and an Indigenous peoples’ rights framework, Journal of Microbiology & Biology Education, 26, https://doi.org/10.1128/jmbe.00152-24
https://doi.org/10.1128/jmbe.00152-24Leenose, J.F., A. Vilagi, D. Pride, R. Betha, and S. Aggarwal, 2025:Unveiling the Limits of Existing Correction Factors for a Low-Cost PM2.5 Sensor in Cold Environments and Development of a Tailored Solution, ACS ES&T Air, 2(7):1191-1201, https://doi.org/10.1021/acsestair.5c00018
https://doi.org/10.1021/acsestair.5c00018Prusevich, A.A., D.M. Meko, I.P. Panyushkina, A.I. Shiklomanov, R.B. Lammers, S.J. Glidden, and R.D. Thaxton, 2025: TRISH: Tree-ring integrated system for hydrology, a web-based tool for reconstruction, Environmental Modelling & Software, 192, https://doi.org/10.1016/j.envsoft.2025.106590
https://doi.org/10.1016/j.envsoft.2025.106590Stenstadvolden, A., O. Stenstadvolden, L. Zhao, M.H. Kapourchali, Y. Zhou, and W.-J. Lee, 2024: Data-Driven Analysis of a NEVI-Compliant EV Charging Station in the Northern Region of the U.S., IEEE Transactions on Industry Applications, 60(4), https://doi.org/10.1109/TIA.2024.3397641
https://doi.org/10.1109/TIA.2024.3397641Wilber, M., J.I. Schmidt, T. Schwoerer, T. Bodony, M. Bergan, J. Groves, T. Atkinson, and L. Albertson, 2025: Are Electric Vehicles a Solution for Arctic Isolated Microgrid Communities?, World Electrical Vehicle Journal, 16(3), https://doi.org/10.3390/wevj16030128
https://doi.org/10.3390/wevj16030128Terekhina, A., A. Volkovitskiy, F. Stammler, K. Mertens, V.Y. Ivanov, P. Orekhov, C.D. Wren, B. Tian, X. Shen, A. Ivanova, D.Liu, & J.P. Ziker, 2024: Adaptive Strategies of Indigenous Nenets Reindeer Herders for Climate Change in Yamal, Sibirica, 23(3): 95-128, https://doi.org/10.3167/sib.2024.230304
https://doi.org/10.3167/sib.2024.230304Bozlak, E., K. Pokharel, M. Weldenegodguad, A. Paasivaara, F. Stammler, K.H. Røed, J. Kantanen, and B. Wallner, 2024: Inferences about the population history of Rangifer tarandus from Y chromosome and mtDNA phylogenies, Ecology and Evolution, 14(6), https://doi.org/10.1002/ece3.11573
https://doi.org/10.1002/ece3.11573Celis, G., P. Ungar, A. Sokolov, N. Sokolova, H. Böhner, D. Liu, O. Gilg, I. Fufachev, O. Pokrovskaya, R.A. Ims, W. Zhou, D. Morris, and D. Ehrich, 2024: A versatile, semi-automated image analysis workflow for time-lapse camera trap image classification, Ecological Informatics, 81, https://doi.org/10.1016/j.ecoinf.2024.102578
https://doi.org/10.1016/j.ecoinf.2024.102578Zhu, M., J. Wang, V. Ivanov, A. Sheshukov, W. Zhou, L. Zhang, V. Mazepa, A. Sokolov, and V. Valdayskikh, 2024: An Analytical Model of Active Layer Depth Under Changing Ground Heat Flux, Journal of Geophysical Research: Atmospheres, 129(5), https://doi.org/10.1029/2023JD039453
https://doi.org/10.1029/2023JD039453Brown, D.R.N, T.J. Brinkman, W.R. Bolton, C.L. Brown, H.S. Cold, T.N. Hollingsworth, and D.L. Verbyla, 2020: Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion, Climatic Change, 162, https://doi.org/10.1007/s10584-020-02748-9
https://doi.org/10.1007/s10584-020-02748-9Arp, C.D., J.E. Cherry, D.R.N. Brown, A.C. Bondurant, and K.L. Endres, 2020: Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers, The Cryosphere, 14, https://doi.org/10.5194/tc-14-3595-2020
https://doi.org/10.5194/tc-14-3595-2020Arp, C.D., D.N. Brown, A.C. Bondurant, K.L. Bodony, M. Engram, K.V. Spellman, S.J Clement, and M.C. Scragg, 2025: Freeze-Up Ice Jams and Channel Hydraulics Cause Hazardous Open Water Zones Within Winter Ice Cover on the Kuskokwim and Yukon Rivers and Their Tributaries, Water Resources Research, 61(4), https://doi.org/10.1029/2024WR039078
https://doi.org/10.1029/2024WR039078Sridhar, A.S., X. Chen, T. Glossmann, Z. Yang, Y. Xu, W. Lai, and X. Zeng, 2023: Single-Frequency Impedance Studies on an Ionic Liquid-Based Miniaturized Electrochemical Sensor toward Continuous Low-Temperature CO2 Monitoring, ACS Sensors, 8(1):197-206, https://doi.org/10.1021/acssensors.2c02040
https://doi.org/10.1021/acssensors.2c02040Saros, J.E., V. Hazuková, R.M. Northington, and S. McGowan, 2025: Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers, Proceedings of the National Academy of Sciences, 122(4), https://doi.org/10.1073/pnas.2413855122
https://doi.org/10.1073/pnas.2413855122Grider, A., J. Saros, R. Northington, and J. Clement Yde, 2025: Glacially-fed lakes of West Greenland have elevated metal and nutrient concentrations and serve as regional repositories of these materials, Science of The Total Environment, 967, https://doi.org/10.1016/j.scitotenv.2025.178744
https://doi.org/10.1016/j.scitotenv.2025.178744Walter Anthony, K.M., P. Lindgren, P. Hanke, M. Engram, P. Anthony, R.P. Daanen, A. Bondurant, A.K. Liljedahl, J. Lenz, G. Grosse, B.M. Jones, L. Brosius, S.R. James, B.J. Minsley, N.J. Pastick, J. Munk, J.P. Chanton, C.E. Miller, and F.J. Meyer, 2021: Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw, Environmental Research Letters, 16(3), https://doi.org/10.1088/1748-9326/abc848
https://doi.org/10.1088/1748-9326/abc848Walter Anthony, K.M., P. Anthony, N. Hasson, C. Edgar, O. Sivan, E. Eliani-Russak, O. Bergman, B.J. Minsley, S.R. James, N.J. Pastick, A. Kholodov, S. Zimov, E. Euskirchen, M.S. Bret-Harte, G. Grosse, M. Langer, and J, Nitzbon, 2024: Upland Yedoma taliks are an unpredicted source of atmospheric methane, Nature Communications, 15, https://doi.org/10.1038/s41467-024-50346-5
https://doi.org/10.1038/s41467-024-50346-5Waldrop, M.P., C.L. Chabot, S. Liebner, S. Holm, M.W. Snyder, M. Dillon, S.R. Dudgeon, T.A Douglas, M.-C. Leewis, K.M. Walter Anthony, J.W. McFarland, C.D. Aro, A.C. Bondurant, N. Taş, R. Mackelprang, 2023: Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients, The ISME Journal, 17(8), 1224-1235, https://doi.org/10.1038/s41396-023-01429-6
https://doi.org/10.1038/s41396-023-01429-6Turetsky, M.R., B.W. Abbott, M.C. Jones, K.W. Anthony, D. Olefeldt, E.A.G. Schuur, G. Grosse, P. Kuhry, G. Hugelius, C. Koven, D.M. Lawrence, C. Gibson, A.B.K. Sannel, and A.D. McGuire, 2020: Carbon release through abrupt permafrost thaw, Nature Geoscience, 13:138-143, https://doi.org/10.1038/s41561-019-0526-0
https://doi.org/10.1038/s41561-019-0526-0Smallwood, C.R., N. Hasson, J. Yang, J. Schambach, H. Bennett, B. Ricken, J.Sammon, M. Mascarenas, N. Eberling, S. Kolker, J. Whiting, W.D. Mays, K.W. Anthony, and P.R. Miller, 2025: Bioindicator “fingerprints” of methane-emitting thermokarst features in Alaskan soils, Frontiers in Microbiology, 15, https://doi.org/10.3389/fmicb.2024.1462941
https://doi.org/10.3389/fmicb.2024.1462941Pellerin, A., N. Lotem, K.W. Anthony, E.E. Russak, N. Hasson, H. Røy, J.P. Chanton, and O. Sivan, 2022: Methane production controls in a young thermokarst lake formed by abrupt permafrost thaw, Global Change Biology, 28(10):3206-3221, https://doi.org/10.1111/gcb.16151
https://doi.org/10.1111/gcb.16151Lamb, A.L., B.D. Barst, C.D. Elder, S. Engels, C. Francis, M. van Hardenbroek, O. Heiri, A. Lombino, H.J. Robson, K.W. Anthony, and M.J. Wooller,2024: Stable isotope analyses of lacustrine chitinous invertebrate remains: Analytical advances, challenges and potential,
https://doi.org/10.1016/j.quascirev.2024.109067
Quaternary Science Reviews, 346, https://doi.org/10.1016/j.quascirev.2024.109067Gagné, K.R., B.A. Eckhardt, K.M. Walter Anthony, D.L. Barnes, and J.J. Guerard, 2023: Dissolved organic matter from surface and pore waters of a discontinuous permafrost watershed in central Alaska reveals both compositional and seasonal heterogeneity. Aquatic Science, 85(31), https://doi.org/10.1007/s00027-022-00930-y
https://doi.org/10.1007/s00027-022-00930-yThelemaque, N., A. Cotherman, R. Pearson, L. Eichelberger, R.B. Neumann, and J.A. Kaminsky, 2022: Identifying the Built, Natural, and Social Factors of Successful and Failed Rural Alaskan Water Projects: Perspectives from State and Regional Professionals, ACS ES&T Water, 2(12):2323–2332, https://doi.org/10.1021/acsestwater.2c00201
https://doi.org/10.1021/acsestwater.2c00201Spearing, L.A., P. Mehendale, L. Albertson, J.A. Kaminsky, and K.M. Faust, 2022: What impacts water services in rural Alaska? Identifying vulnerabilities at the intersection of technical, natural, human, and financial systems, Journal of Cleaner Production, 379(1), https://doi.org/10.1016/j.jclepro.2022.134596
https://doi.org/10.1016/j.jclepro.2022.134596Spearing, L.A., A. Bakchan, L.C. Hamlet, K.K. Stephens, J.A. Kaminsky, and K.M. Faust, 2022: Comparing Qualitative Analysis Techniques for Construction Engineering and Management Research: The Case of Arctic Water Infrastructure, Journal of Construction Engineering and Management, 148(7), https://doi.org/10.1061/(ASCE)CO.1943-7862.0002313
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002313Schuler, M.L., N. Ritsch, D.E. Armanios, L. Albertson, L.E. Katz, and K.M. Faust, 2025: Legitimizing Water Service Decisions: Stakeholder Perspectives on Infrastructure Management in Remote Alaska, ACS ES&T Water, 5(8):4552-4563, https://doi.org/10.1061/9780784484852.049
https://doi.org/10.1061/9780784484852.049Stark, N., B. Green, N. Brilli, E. Eidam, K.W. Franke, and K. Markert, 2022: Geotechnical Measurements for the Investigation and Assessment of Arctic Coastal Erosion—A Review and Outlook, Journal of Marine Science and Engineering, 10(7), https://doi.org/10.3390/jmse10070914
https://doi.org/10.3390/jmse10070914Wormuth, B., S. Wang, P. Dehghanian, M. Barati, A. Estebsari, T.P. Filomena, 2020: Electric Power Grids Under High-Absenteeism Pandemics: History, Context, Response, and Opportunities, IEEE Access, (8):215727-215747, https://doi.org/10.1109/ACCESS.2020.3041247
https://doi.org/10.1109/ACCESS.2020.3041247Su, J., R. Zhang, P. Dehghanian and M. H. Kapourchali, 2023: Pre-Disaster Allocation of Mobile Renewable-Powered Resilience-Delivery Sources in Power Distribution Networks, 2023 North American Power Symposium (NAPS), https://doi.org/10.1109/NAPS58826.2023.10318581
https://doi.org/10.1109/NAPS58826.2023.10318581Su, J., S. Mehrani, P. Dehghanian and M. A. Lejeune, 2024: Quasi Second-Order Stochastic Dominance Model for Balancing Wildfire Risks and Power Outages due to Proactive Public Safety De-Energizations, IEEE Transactions on Power Systems, 39(2):2528-2542, https://doi.org/10.1109/TPWRS.2023.3289788
https://doi.org/10.1109/TPWRS.2023.3289788Su, J., P. Dehghanian, B. Vergara and M. H. Kapourchali, 2021: An Energy Management System for Joint Operation of Small-Scale Wind Turbines and Electric Thermal Storage in Isolated Microgrids, 2021 North American Power Symposium (NAPS), College Station, https://doi.org/10.1109/NAPS52732.2021.9654467
https://doi.org/10.1109/NAPS52732.2021.9654467Nazemi, P., P. Dehghanian, M. Alhazmi and Y. Darestani, 2021: Resilience Enhancement of Electric Power Distribution Grids against Wildfires, 2021 IEEE Industry Applications Society Annual Meeting (IAS), Vancouver, https://doi.org/10.1109/IAS48185.2021.9677372
https://doi.org/10.1109/IAS48185.2021.9677372Kabirifar, M., M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, N. Pourghaderi, and P. Dehghagian, 2022: A Bi-Level Framework for Expansion Planning in Active Power Distribution Networks, IEEE Transactions on Power Systems, 37(4):2639-2654, https://doi.org/10.1109/TPWRS.2021.3130339
https://doi.org/10.1109/TPWRS.2021.3130339Rostamzadeh, M., M.H. Kapourchali, L. Zhao, and V. Aravinthan, 2023: Outage Management of Power Distribution Systems with Electricity-Dependent Medically-Vulnerable Critical Loads, 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), https://doi.org/10.1109/ICPS57144.2023.10142087
https://doi.org/10.1109/ICPS57144.2023.10142087Rostamzadeh, M., M.H. Kapourchali, L. Zhao, and V. Aravinthan, 2024: Optimal Reconfiguration of Power Distribution Grids to Maintain Line Thermal Efficiency During Progressive Wildfires, IEEE Systems Journal, 18(1):632-643, https://doi.org/10.1109/JSYST.2023.3339771
https://doi.org/10.1109/JSYST.2023.3339771Lindemann, M., K. DeMichele, M.H. Kapourchali, C. Waigl, and E. Trochim, 2023: Igniting Precision: Amplifying Wildfire Prediction in Diverse Regions via Teacher-Student Model Fusion, 2023 International Conference on Machine Learning and Applications (ICMLA), https://doi.org/10.1109/ICMLA58977.2023.00079
https://doi.org/10.1109/ICMLA58977.2023.00079Beikbabaei, M., M. Lindemann, M.H. Kapourchali, and A. Mehrizi-Sani, 2024: Machine Learning-Based Protection and Fault Identification of 100% Inverter-Based Microgrids, 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), https://doi.org/10.1109/ISIE54533.2024.10595742
https://doi.org/10.1109/ISIE54533.2024.10595742Ali, A.J., L. Zhao, M.H. Kapourchali, and W.-J. Lee, 2024: The Indexing Development for Assessing Impact of Wildfire Smoke on Photovoltaic System Performance, IEEE Transactions on Industry Applications, 60(4)5282-5290, https://doi.org/10.1109/TIA.2024.3379326
https://doi.org/10.1109/TIA.2024.3379326Ali, A.J., L. Zhao, M.H. Kapourchali, and W.-J. Lee, 2023: Development of A Quantification Method for The Impact of Wildfire Smoke on Photovoltaic Systems, 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), https://doi.org/10.1109/ICPS57144.2023.10142101
https://doi.org/10.1109/ICPS57144.2023.10142101Norchi, C.H., and A.H. Lynch, 2022: Arctic Navigation and Climate Change: Projections from Science for the Law of the Sea, international Law Studies, 99, https://digital-commons.usnwc.edu/cgi/viewcontent.cgi?article=3015&context=ils
https://digital-commons.usnwc.edu/cgi/viewcontent.cgi?article=3015&context=ilsTingstad, A., K. Van Abel, M.M. Bennett, I. Winston, L.W. Brigham, S.R. Stephenson, M. Wilcox, and S. Pezard, 2024: Divergent trajectories of Arctic change: Implications for future socio-economic patterns, Ambio, 54:239-255, https://doi.org/10.1007/s13280-024-02080-x
https://doi.org/10.1007/s13280-024-02080-xGulfam-E-Jannart, S., L. El Bitar, B.S. Baghirzade, U. Arora, N. Sinha, S. Dev, M. Kanevskiy, S. Aggarwal, M.J. Kirisits, and N.B. Saleh, 2025: Unlocking the past: Release of hazardous contaminants into water from thawing permafrost, Journal of Hazardous Materials, 495, https://doi.org/10.1016/j.jhazmat.2025.139068
https://doi.org/10.1016/j.jhazmat.2025.139068Hasan, M.I., N. Sinha, B.S. Baghirzade, S. Karki, U. Arora, M.J. Kirisits, S. Aggarwal, N.B. Saleh, and S. Dev, 2025: Wildfires in Alaskan Boreal Forests Release Elevated Levels of Polyaromatic Hydrocarbon, Environmental Science & Technology, 59(21):10434-10444, https://doi.org/10.1021/acs.est.4c09278
https://doi.org/10.1021/acs.est.4c09278Eichelberger, L., S. Dev, T. Howe, D.L. Barnes, E. Bortz, B.R. Briggs, P. Cochran, A.D. Dotson, D.M. Drown, M.B. Hahn, K. Mattos, S. Aggarwal, 2021: Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan communities, Science of The Total Environment, 776, https://doi.org/10.1016/j.scitotenv.2021.145842
https://doi.org/10.1016/j.scitotenv.2021.145842Dev, S., D. Schwarz, M. Rashedin, M.I. Hasan, D. Kholodova, S. Billings, D. L. Barnes, N. Misarti, N.B. Saleh, and S. Aggarwal, 2024: Unveiling microplastics pollution in Alaskan waters and snow, Environmental Science: Water Research & Technology, 10(9), https://doi.org/10.1039/D4EW00092G
https://doi.org/10.1039/D4EW00092GJúlíusson, Á.D., 2024: Voru fornbýlin hjáleigur? Útbreiðsla og staða hjáleigna á miðöldum (Were the ancient farms leased? The spread and status of leases in the Middle Ages), History: magazine of the Icelandic Historical Society , LXII (II), 110-144, https://iris.hi.is/is/publications/voru-fornb%C3%BDlin-hj%C3%A1leigur-%C3%BAtbrei%C3%B0sla-og-sta%C3%B0a-hj%C3%A1leigna-%C3%A1-mi%C3%B0%C3%B6ldum
https://iris.hi.is/is/publications/voru-fornb%C3%BDlin-hj%C3%A1leigur-%C3%BAtbrei%C3%B0sla-og-sta%C3%B0a-hj%C3%A1leigna-%C3%A1-mi%C3%B0%C3%B6ldumZwieback, S., M. McClernan, M. Kanevskiy, M.T. Jorgenson, D.A. Walker, Q. Chang, H. Bergstedt, H. Toniolo, V.E. Romanovsky, and F.J. Meyer, 2023: Disparate permafrost terrain changes after a large flood observed from space, Permafrost and Periglacial Processes, 34(4):451-466, https://doi.org/10.1002/ppp.2208
https://doi.org/10.1002/ppp.2208Shur, Y., D. Fortier, M.T. Jorgenson, M. Kanevskiy, L. Schirrmeister, J. Strauss, A. Vasiliev, and M. Ward Jones, 2022: Yedoma Permafrost Genesis: Over 150 Years of Mystery and Controversy, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.757891
https://doi.org/10.3389/feart.2021.757891Raynolds, M.K., J.C. Jorgenson, M.T. Jorgenson, M. Kanevskiy, A.K. Liljedahl, M. Nolan, M. Sturm, and D.A. Walker, 2020: Landscape impacts of 3D-seismic surveys in the Arctic National Wildlife Refuge, Alaska, Ecological Applications, 30(7), https://doi.org/10.1002/eap.2143
https://doi.org/10.1002/eap.2143Povoroznyuk, O., W.F. Vincent, P. Schweitzer, R. Laptander, M. Bennett, F. Calmels, D. Sergeev, C. Arp, B.C. Forbes, P. Roy-Léveillée, and D.A. Walker, 2022: Arctic roads and railways: social and environmental consequences of transport infrastructure in the circumpolar North, Arctic Science, 9(2): 297-330, https://doi.org/10.1139/as-2021-0033
https://doi.org/10.1139/as-2021-0033Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.E. Walsh, P.A. Bieniek, L. Cai, J.C. Comiso, H.E. Epstein, G.V. Frost, R. Gersten, A.S. Hendricks, J.E. Pinzon, L. Stock, and C.J. Tucker, 2021: Climate drivers of Arctic tundra variability and change using an indicators framework, Environmental Research Letters, 16, https://doi.org/10.1088/1748-9326/abe676
https://doi.org/10.1088/1748-9326/abe676Serreze, M.C., J. Gustafson, A.P. Barrett, M.L. Druckenmiller, S. Fox, J. Voveris, J. Stroeve, B. Sheffield, B.C. Forbes, and S. Rasmus, 2021: Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts, Environmental Research Letters, 16, https://doi.org/10.1088/1748-9326/ac269b
https://doi.org/10.1088/1748-9326/ac269bDegai, T.S., and A.N. Petrov, 2021: Rethinking Arctic sustainable development agenda through indigenizing UN sustainable development goals, International Journal of Sustainable Development & World Ecology, 28(6):518-523, https://doi.org/10.1080/13504509.2020.1868608
https://doi.org/10.1080/13504509.2020.1868608York, A.M., E. Zdor, S. BurnSilver, T. Degai, M. Monakhova, S. Isakova, A.N. Petrov, M. Kempf, 2022: Institutional navigation of oceans governance: Lessons from Russia and the United States Indigenous multi-level whaling governance in the Arctic, Earth System Governance, 14, https://doi.org/10.1016/j.esg.2022.100154
https://doi.org/10.1016/j.esg.2022.100154York, A.M., C.D. Otten, S. BurnSilver, S.L. Neuberg, and J.M. Anderies, 2021: Integrating institutional approaches and decision science to address climate change: a multi-level collective action research agenda, Current Opinion in Environmental Sustainability, 52:19-26, https://doi.org/10.1016/j.cosust.2021.06.001
https://doi.org/10.1016/j.cosust.2021.06.001Pfirman, S., T. O'Garra, E. Bachrach Simon, J. Brunacini, D. Reckien, J.J. Lee, and E. Lukasiewicz, 2021: “Stickier” learning through gameplay: An effective approach to climate change education, Journal of Geoscience Education, 69(2), https://doi.org/10.1080/10899995.2020.1858266
https://doi.org/10.1080/10899995.2020.1858266O'Garra, T., D. Reckien, S. Pfirman, E. Bachrach Simon, G. A. Bachman, J. Brunacini, and J. J. Lee., 2021: Impact of gameplay vs. reading on mental models of social-ecological systems: a fuzzy cognitive mapping approach, Ecology and Society, 26(2):25, https://doi.org/10.5751/ES-12425-260225
https://doi.org/10.5751/ES-12425-260225Trotechaud, S., B. Tremblay, J. Williams, J. Romanski, A. Romanou, M. Bushuk, W. Merryfield, and R. Msadek, 2024: Predictability of the Minimum Sea Ice Extent from Winter Fram Strait Ice Area Export: Model versus Observations, J. Climate, 37, 2361-2377, https://doi.org/10.1175/JCLI-D-22-0931.1
https://doi.org/10.1175/JCLI-D-22-0931.1Le Guern-Lepage, A., and B.L. Tremblay, 2023: Disentangling Dynamic from Thermodynamic Summer Ice Area Loss from Observations (1979–2021): A Potential Mechanism for a “First-Time” Ice-Free Arctic, J. Climate, 36, 7693-7713, https://doi.org/10.1175/JCLI-D-22-0628.1
https://doi.org/10.1175/JCLI-D-22-0628.1Lavoie, J., B. Tremblay, and E. Rosenblum, 2022: Pacific Waters Pathways and Vertical Mixing in the CESM1-LE: Implication for Mixed Layer Depth Evolution and Sea Ice Mass Balance in the Canada Basin, Journal of Geophysical Research: Oceans, 127(2), https://doi.org/10.1029/2021JC017729
https://doi.org/10.1029/2021JC017729Blockley, E., M. Vancoppenolle, E. Hunke, C. Bitz, D. Feltham, J..-F. Lemieux, M. Losch, E. Maisonnave, D. Notz, P. Rampal, S. Tietsche, B. Tremblay, A. Turner, F. Massonnet, E. Ólason, A. Roberts, Y. Aksenov, T. Fichefet, G. Garric, D. Iovino, G. Madec, C. Rousset, D. Salas y Melia, and D. Schroeder, 2020: The Future of Sea Ice Modeling: Where Do We Go from Here?, Bulletin of the American Meteorological Society, 101(8), https://doi.org/10.1175/BAMS-D-20-0073.1
https://doi.org/10.1175/BAMS-D-20-0073.1Herman-Mercer, N., A. Andre, V. Buschman, D. Blaskey, C. Brooks, Y. Cheng, E. Combs, K. Cozzetto, S. Fitka, J. Koch, A. Lawlor, E. Moses, E. Murray, E. Mutter, A.J. Newman, C. Prince, P. Salmon, J. Tlen, R. Toohey, M. Williams, and K.N. Musselman, 2023: The Arctic Rivers Project: Using an Equitable Co-Production Framework for Integrating Meaningful Community Engagement and Science to Understand Climate Impacts, Community Science, 2(4), https://doi.org/10.1029/2022CSJ000024
https://doi.org/10.1029/2022CSJ000024Cheng, Y., K.N. Musselman, S. Swenson, D. Lawrence, J. Hamman, K. Dagon, D. Kennedy, and A.J. Newman, 2022: Moving Land Models Toward More Actionable Science: A Novel Application of the Community Terrestrial Systems Model Across Alaska and the Yukon River Basin, Water Resources Research, 59(1), https://doi.org/10.1029/2022WR032204
https://doi.org/10.1029/2022WR032204Cheng, Y., A. Craig, K. Musselman, A. Bennett, M. Seefeldt, J. Hamman, and A.J. Newman, 2024: Coupled High-Resolution Land-Atmosphere Modeling for Hydroclimate and Terrestrial Hydrology in Alaska and the Yukon River Basin (1990–2021), Journal of Geophysical Research, 130(1), https://doi.org/10.1029/2024JD041185
https://doi.org/10.1029/2024JD041185Blaskey, D., J.C. Koch, M.N. Gooseff, A.J. Newman, Y. Cheng, J.A. O'Donnell, and K.N. Musselman, 2023: Increasing Alaskan river discharge during the cold season is driven by recent warming, Environmental Research Letters, 18, https://doi.org/10.1088/1748-9326/acb661
https://doi.org/10.1088/1748-9326/acb661Blaskey, D., M.N. Gooseff, Y. Cheng, A.J. Newman, J.C. Koch, and K.N. Musselman, 2024: A High-Resolution, Daily Hindcast (1990–2021) of Alaskan River Discharge and Temperature From Coupled and Optimized Physical Models, Water Resources Research, 60(4), https://doi.org/10.1029/2023WR036217
https://doi.org/10.1029/2023WR036217Wang, P., N. Kateris, B. Li, Yiwen Zhang, J. Luo, C. Wang, Yue Zhang, A.S. Jayaraman, X. Hu, H. Wang, and W. Li, 2023: High-Performance Lithium–Sulfur Batteries via Molecular Complexation, Journal of the American Chemical Society, 145(34):18865-18876, https://doi.org/10.1021/jacs.3c05209
https://doi.org/10.1021/jacs.3c05209Mucioki, M., S. Kelly, D. Holen, B. Powell, T. Galbreath, S. Paterno, R. Mixon, and G. Chi, 2024: Gardening practices in Alaska build on traditional food system foundations, Agriculture and Human Values, 42:965-981, https://doi.org/10.1007/s10460-024-10652-6
https://doi.org/10.1007/s10460-024-10652-6Korkut, E., L.B. Fowler, K.E. Halvorsen, D. Holen, E.L. Howe, and G. Chi, 2022: Addressing Climate Impacts in Alaska Native Tribes: Legal Barriers for Community Relocation due to Thawing Permafrost and Coastal Erosion, UCLA Journal of Environmental Law and Policy, 40(2), https://doi.org/10.5070/L540259339
https://doi.org/10.5070/L540259339Ungar, P.S., B. Van Valkenburgh, A.S. Peterson, A.A. Sokolov, N.A. Sokolova, D. Ehrich, I.A. Fufachev, O. Gilg, A. Terekhina, A. Volkovitskiy, and V. Shtro, 2021: Dental evidence for variation in diet over time and space in the Arctic fox, Vulpes lagopus, Polar Biology, 44:509-523, https://doi.org/10.1007/s00300-021-02821-8
https://doi.org/10.1007/s00300-021-02821-8Ungar, P.S., B. Van Valkenburgh, N. Sokolova, I. Fufachev, V. Filippova, K. Shklyar, and A. Sokolov, 2022: Changes in dental wear and breakage in arctic foxes (Vulpes lagopus) across space and time: evidence for anthropogenic food subsidies?, Canadian Journal of Zoology, 100, https://doi.org/10.1139/cjz-2022-0057
https://doi.org/10.1139/cjz-2022-0057Ivanov, V.Y., P.S. Ungar, J.P. Ziker, S. Abdulmanova, G. Celis, A. Dixon, D. Ehrich, I. Fufachev, O. Gilg, M. Heskel, D. Liu, M. Macias-Fauria, V. Mazepa, K. Mertens, P. Orekhov, A. Peterson, O. Pokrovskaya, A. Sheshukov, A. Sokolov, N. Sokolova, M. Spiegel, M. Sponheimer, F. Stammler, T. Taylor, A. Terekhina, V. Valdayskikh, A. Volkovitskiy, J. Wang, and W. Zhou, 2024: A Convergence Science Approach to Understanding the Changing Arctic, Earth's Future, 12(5), https://doi.org/10.1029/2023EF004157
https://doi.org/10.1029/2023EF004157Olefeldt, D., M. Hovemyr, M.A. Kuhn, D. Bastviken, T.J. Boh, J. Connolly, P. Crill, E.S. Euskirchen, S.A. Finkelstein, H. Genet, G. Grosse, L.I. Harris, L. Heffernan, M. Helbig, G. Hugelius, R. Hutchins, S. Juutinen, M.J. Lara, and authors, 2021: The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth System Science Data, 13(11), https://doi.org/10.5194/essd-13-5127-2021
https://doi.org/10.5194/essd-13-5127-2021NItze, I., J. Van der Sluijs, S. Barth, P. Bernhard, L. Huang, A. Kizyakov, M.J. Lara, N. Nesterova, A. Runge, A. Veremeeva, M. Ward Jones, C. Witharana, Z. Xia, and A.K. Liljedahl, 2024: A Labeling Intercomparison of Retrogressive Thaw Slumps by a Diverse Group of Domain Experts, Permafrost and Periglacial Processes, 36(1):83-92, https://doi.org/10.1002/ppp.2249
https://doi.org/10.1002/ppp.2249Mekonnen, Z.A., W.J. Riley, R.F. Grant, V.G. Salmon, C.M. Iversen, S.C. Biraud, A.L. Breen, and M.J. Lara, 2021: Topographical Controls on Hillslope-Scale Hydrology Drive Shrub Distributions on the Seward Peninsula, Alaska, Journal of Geophysical Research: Biogeosciences, 126(2), https://doi.org/10.1029/2020JG005823
https://doi.org/10.1029/2020JG005823Anderson, D.P., R.J. Michaelides, W. Chen, G.V. Frost, M.J. Macander, and M.J. Lara, 2024: Tundra fires and surface subsidence increase spectral diversity on the Yukon–Kuskokwim Delta, Alaska, Environmental Research Ecology, 3, https://doi.org/10.1088/2752-664X/ad9282
https://doi.org/10.1088/2752-664X/ad9282Liu, J., M.j. Gunsch, C.E. Moffett, L. Xu, R. El Asmar, Q. Zhang, T.B. Watson, H.M. Allen, J.D. Crounse, J. St. Clair, M. Kim, P.O. Wennberg, R.J. Weber, R.J. Sheesley, and K. A. Pratt, 2021: Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field, Environmental Science & Technology Letters, 8(7):511-518, https://doi.org/10.1021/acs.estlett.1c00357
https://doi.org/10.1021/acs.estlett.1c00357Yang, Y., M.A. Battaglia, E.S. Robinson, P.F. DeCarlo, K.C. Edwards, T. Fang, S. Kapur, M. Shiraiwa, M. Cesler-Maloney, W.R. Simpson, J.R. Campbell, A. Nenes, J. Mao, and R.J. Weber, 2024: Indoor–Outdoor Oxidative Potential of PM2.5 in Wintertime Fairbanks, Alaska: Impact of Air Infiltration and Indoor Activities, ACS EST Air, 1(3):188-199, https://doi.org/10.1021/acsestair.3c00067
https://doi.org/10.1021/acsestair.3c00067Yang, Y., M.A. Battaglia, M.K. Mohan, E.S. Robinson, P.F. DeCarlo, K.C. Edwards, T. Fang, S. Kapur, M. Shiraiwa, M. Cesler-Maloney, W.R. Simpson, J.R. Campbell, A. Nenes, J. Mao, and R.J. Weber, 2024: Assessing the Oxidative Potential of Outdoor PM2.5 in Wintertime Fairbanks, Alaska, ACS EST Air, 1(3):175-187, https://doi.org/10.1021/acsestair.3c00066
https://doi.org/10.1021/acsestair.3c00066Robinson, E.S., M. Battaglia Jr., J.R. Campbell, M. Cesler-Maloney, W. Simpson, J. Mao, R.J. Weber, and P.F. DeCarlo, 2024: Multi-year, high-time resolution aerosol chemical composition and mass measurements from Fairbanks, Alaska, Environmental Science: Atmospheres, 4(6):685-698, https://doi.org/10.1039/D4EA00008K
https://doi.org/10.1039/D4EA00008KMoon, A., U. Jongebloed, K.K. Dingilian, A.J. Schauer, Y.-C. Chan, M. Cesler-Maloney, W.R. Simpson, R.J. Weber, L. Tsiang, F. Yazbeck, S. Zhai, A. Wedum, A.J. Turner, S. Albertin, S. Bekki, J. Savarino, K. Gribanov, K.A. Pratt, E.J. Costa, C. Anastasio, M.O. Sunday, L. M. D. Heinlein, J. Mao, and B. Alexander, 2023: Primary Sulfate Is the Dominant Source of Particulate Sulfate during Winter in Fairbanks, Alaska, CAS ES&T Air, 1(3):139-149, https://doi.org/10.1021/acsestair.3c00023
https://doi.org/10.1021/acsestair.3c00023Lill, E., E.J. Costa, K. Barry, J.A. Mirrielees, M. Mashkevich, J. Wu, A.L. Holen, M. Cesler-Maloney, P.J. DeMott, R. Perkins, T. Hill, A. Sullivan, E. Levin, W.R. Simpson, J. Mao, B. Temime-Roussel, B. D'Anna, K.S. Law, A.P. Ault, C. Schmitt, K.A. Pratt, E.V. Fischer, and J. Creamean, 2024: The Abundance and Sources of Ice Nucleating Particles Within Alaskan Ice Fog, Journal of Geophysical Research: Atmospheres, 129(16), https://doi.org/10.1029/2024JD041170
https://doi.org/10.1029/2024JD041170Edwards, K.C., S. Kapur, T. Fang, M. Cesler-Maloney, Y. Yang, A.L. Holen, J. Wu, E.S. Robinson, P.F. DeCarlo, K.A. Pratt, R.J. Weber, W.R. Simpson, and M. Shiraiwa, 2024: Residential Wood Burning and Vehicle Emissions as Major Sources of Environmentally Persistent Free Radicals in Fairbanks, Alaska, Environmental Science & Technology, 58(32):14293:14305, https://doi.org/10.1021/acs.est.4c01206
https://doi.org/10.1021/acs.est.4c01206Dingilian, K., E. Hebert, M. Battaglia Jr., J.R. Campbell, M. Cesler-Maloney, W. Simpson, J.M. St. Clair, J. Dibb, B. Temime-Roussel, B. D'Anna, A. Moon, B. Alexander, Y. Yang, A. Nenes, J. Mao, and R.J. Weber, 2024: Hydroxymethanesulfonate and Sulfur(IV) in Fairbanks Winter During the ALPACA Study, ACS ES&T Air, 1(7):646-659, https://doi.org/10.1021/acsestair.4c00012
https://doi.org/10.1021/acsestair.4c00012Cesler-Maloney, M., W.R. Simpson, T. Miles, J. Mao, K.S. Law, and T.J. Roberts, 2022: Differences in Ozone and Particulate Matter Between Ground Level and 20 m Aloft are Frequent During Wintertime Surface-Based Temperature Inversions in Fairbanks, Alaska, Journal of Geophysical Research: Atmosphere, 127(10), https://doi.org/10.1029/2021JD036215
https://doi.org/10.1029/2021JD036215Campbell, J.R., M. Battaglia Jr., K.K. Dingilian, M. Cesler-Maloney, W.R. Simpson, E.S. Robinson, P.F. DeCarlo, B. Temime-Roussel, B. D'Anna, A.L. Holen, J. Wu, K.A. Pratt, J.E. Dibb, A. Nenes, R.J. Weber, and J. Mao, 2024: Enhanced aqueous formation and neutralization of fineatmospheric particles driven by extreme cold, Science Advances, 10(36), https://doi.org/10.1126/sciadv.ado4373
sciadv.ado4373.pdf https://doi.org/10.1126/sciadv.ado4373Campbell, J.R., M. Battaglia Jr., K. Dingilian, M. Cesler-Maloney, J.M. St. Clair, T.F. Hanisco, E. Robinson, P. DeCarlo, W. Simpson, A. Nenes, R.J. Weber, and J. Mao, 2022: Source and Chemistry of Hydroxymethanesulfonate (HMS) in Fairbanks, Alaska, Environmental Science & Technology, 56(12):7657-7667, https://doi.org/10.1021/acs.est.2c00410
https://doi.org/10.1021/acs.est.2c00410Wolken, G.J., A.K. Liljedahl, M. Brubaker, J.A. Coe, G. Fiske, H. Hvidtfeldt Christiansen, M. Jacquemart, B.M. Jones, A. Kääb, F. Løvholt, S. Natali, A.C.A. Rudy, and D. Streletskiy, 2022: Glacier and Permafrost Hazards, NOAA Technical Report OAR ARC, 21-13, https://doi.org/10.25923/v40r-0956
noaa_34198_DS1.pdf https://doi.org/10.25923/v40r-0956Witharana, C., M.R. Udawalpola, A.K. Liljedahl, M.K. Ward Jones, B.M. Jones, A. Hasan. D. Joshi, and E. Manos, 2022: Automated Detection of Retrogressive Thaw Slumps in the High Arctic Using High-Resolution Satellite Imagery, Remote Sensing, 14(17), https://doi.org/10.3390/rs14174132
https://doi.org/10.3390/rs14174132Webb, E.E., A.K. Liljedahl, J.A. Cordeiro, M. M. Loranty, C. Witharana, and J.W. Lichstein, 2022: Permafrost thaw drives surface water decline across lake-rich regions of the Arctic, Nature Climate Change, 12:841-846, https://doi.org/10.1038/s41558-022-01455-w
https://doi.org/10.1038/s41558-022-01455-wUdawalpola, M.R., A. Hasan, A. Liljedahl, A. Soliman, J. Terstriep, and C. Witharana, 2022: An Optimal GeoAI Workflow for Pan-Arctic Permafrost Feature Detection from High-Resolution Satellite Imagery, Photogrammetric Engineering & Remote Sensing, 88(3):181-188, https://doi.org/10.14358/PERS.21-00059R2
https://doi.org/10.14358/PERS.21-00059R2Perera, A.S., C. Witharana, E. Manos, and A.K. Liljedahl, 2024: Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning, IEEE Access, 12, https://doi.org/10.1109/ACCESS.2024.3379142
https://doi.org/10.1109/ACCESS.2024.3379142Manos, E., C. Witharana, and A.K. Liljedahl, 2025: Permafrost thaw-related infrastructure damage costs in Alaska are projected to double under medium and high emission scenarios, Communications Earth & Environment, 6(221), https://doi.org/10.1038/s43247-025-02191-7
https://doi.org/10.1038/s43247-025-02191-7Dai, C., I.M. Howat, J. van der Sluijs, A.K. Liljedahl, B. Higman, J.T. Freymueller, M.K. Ward Jones, S.V. Kokelj, J. Boike, B. Walker, and P. Marsh, 2024: Applications of ArcticDEM for measuring volcanic dynamics, landslides, retrogressive thaw slumps, snowdrifts, and vegetation heights, Science of Remote Sensing, 9, https://doi.org/10.1016/j.srs.2024.100130
https://doi.org/10.1016/j.srs.2024.100130Abolt, C.J., A.L. Atchley, D.R. Harp, M.T. Jorgenson, C. Witharana, W.R. Bolton, J. Schwenk, T. Rettelbach, G. Grosse, J. Boike, I. Nitze, A.K. Liljedahl, C.T. Rumpca, C.J. Wilson, and K.E. Bennett, 2024:Topography Controls Variability in Circumpolar Permafrost Thaw Pond Expansion, Journal of Geophysical Research: Earth Surface, 129(9), https://doi.org/10.1029/2024JF007675
https://doi.org/10.1029/2024JF007675Liljedahl, A.K., M. Kanevskiy, T. Jorgenson, B.M. Jones, R. Daanen, H.E. Epstein, C.G. Griffin, K. Kent, and M.K. Ward Jones, 2021: An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery, Remote Sensing, 13(4), https://doi.org/10.3390/rs13040558
Udawalpola, M.R., C. Witharana, A. Hasan, A. Liljedahl, M. Ward Jones, and B. Jones, 2022: AUTOMATED RECOGNITION OF PERMAFROST DISTURBANCES USING HIGH-SPATIAL RESOLUTION SATELLITE IMAGERY AND DEEP LEARNING MODELS, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-M-2, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022Udawalpola, M., A. Hasan, A.K. Liljedahl, A. Soliman, and C. Witharana, 2021: OPERATIONAL-SCALE GEOAI FOR PAN-ARCTIC PERMAFROST FEATURE DETECTION FROM HIGH-RESOLUTION SATELLITE IMAGERY, International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Science, XLIV-M-3, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-175-2021
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-175-2021Manos, E., C. Witharana, M.R. Udawalpola, A. Hasan, and A.K. Liljedahl, 2022: Convolutional Neural Networks for Automated Built Infrastructure Detection in the Arctic Using Sub-Meter Spatial Resolution Satellite Imagery, Remote Sensing, 14(11), https://doi.org/10.3390/rs14112719
https://doi.org/10.3390/rs14112719Manos, E., C. Witharana, A.S. Perera, and A.K. Liljedahl, 2023: A multi-objective comparison of CNN architectures in Arctic human-built infrastructure mapping from sub-meter resolution satellite imagery, International Journal of Remote Sensing, 44(24):7670-7705, https://doi.org/10.1080/01431161.2023.2287563
https://doi.org/10.1080/01431161.2023.2287563Li, W., C.-Y. Hsu, S. Wang, C. Witharana, and A. Liljedahl, 2022: Real-time GeoAI for high-resolution mapping and segmentation of arctic permafrost features: the case of ice-wedge polygons, GeoAI '22: Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, p.62-65, https://doi.org/10.1145/3557918.3565869
3557918.3565869.pdf https://doi.org/10.1145/3557918.3565869Klein, K.P., H. Lantuit, B. Heim, D. Doxaran, B. Juhls, I. Nitze, D. Walch, A. Poste, and J. E. Søreide, 2021: The Arctic Nearshore Turbidity Algorithm (ANTA) - A multi sensor turbidity algorithm for Arctic nearshore environments, Science of Remote Sensing, 4, https://doi.org/10.1016/j.srs.2021.100036
https://doi.org/10.1016/j.srs.2021.100036Karjalainen, O., M. Luoto, J. Aalto, B. Etzelmüller, G. Grosse, B.M. Jones, K.S. Lilleøren, and J. Hjort, 2020: High potential for loss of permafrost landforms in a changing climate, Environmental Research Letters, 15(10), https://doi.org/10.1088/1748-9326/abafd5
https://doi.org/10.1088/1748-9326/abafd5Jones, B.M., S.S. Tessier, T. Tessier, M. Brubaker, M. Brook, J. Schaeffer, M.K. Ward Jones, G. Grosse, I. Nitze, T. Rettelbach, S. Zavoico, J.A. Clark, and K.D. Tape, 2023: Integrating local environmental observations and remote sensing to better understand the life cycle of a thermokarst lake in Arctic Alaska, Arctic, Antarctic, and Alpine Research, 55(1), https://doi.org/10.1080/15230430.2023.2195518
https://doi.org/10.1080/15230430.2023.2195518Heidler, K., I. Nitze, G. Grosse, and X.X. Zhu, 2024: PixelDINO: Semi-Supervised Semantic Segmentation for Detecting Permafrost Disturbances in the Arctic, IEEE Transactions on Geoscience and Remote Sensing, 62:1-12, https://doi.org/10.1109/TGRS.2024.3448294
https://doi.org/10.1109/TGRS.2024.3448294Hasan, A., C. Witharana, M.R. Udawalpola, and A.K. Liljedahl, 2022: DETECTION OF CLOUDS IN MEDIUM-RESOLUTION SATELLITE IMAGERY USING DEEP CONVOLUTIONAL NEURAL NETS, The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, XLVI-M-2, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-103-2022
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-103-2022Hasan, A., M.R. Udawalpola, C. Witharana, and A.K. Liljedahl, 2021: COUNTING ICE-WEDGE POLYGONS FROM SPACE: USE OF COMMERCIAL SATELLITE IMAGERY TO MONITOR CHANGING ARCTIC POLYGONAL TUNDRA, The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, XLIV-M-3, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-67-2021
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-67-2021Dai, C., B. Higman, P. J. Lynett, M. Jacquemart, I.M. Howat, A.K. Liljedahl, A. Dufresne, J.T. Freymueller, M. Geertsema, M.W. Jones and P.J. Haeussler, 2020: Detection and Assessment of a Large and Potentially Tsunamigenic Periglacial Landslide in Barry Arm, Alaska, Geophysical Research Letters, 47(22), https://doi.org/10.1029/2020GL089800
https://doi.org/10.1029/2020GL089800Bhuiyan, M.A.E., C. Witharana and A.K. Liljedahl, 2020: Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep Learning to Automatically Map Ice-Wedge Polygons across Tundra Vegetation Types, J. Imaging, 6(12), https://doi.org/10.3390/jimaging6120137
https://doi.org/10.3390/jimaging6120137Bartsch, A., G. Pointner, I. Nitze, A. Efimova, D. Jakober, S. Ley, E. Högström, G. Grosse, and P. Schweitzer, 2021: Expanding infrastructure and growing anthropogenic impacts along Arctic coasts, Environmental Research Letters, 16(11), https://doi.org/10.1088/1748-9326/ac3176
https://doi.org/10.1088/1748-9326/ac3176Alessa, L., S.K. Moon, J. Valentine, M. Marks, D. Hepburn, and A. Kliskey, 2021: Surprise and Suspense: How the Intelligence Community Forgot the Future, The International Journal of Intelligence, Security, and Public Affairs, 23(3):310-342, https://doi.org/10.1080/23800992.2021.2006954
https://doi.org/10.1080/23800992.2021.2006954Wang, Z., M. Xiao, D. Nicolsky, V. Romanovsky, C. McComb, and L. Farquharson, 2023: Arctic coastal hazard assessment considering permafrost thaw subsidence, coastal erosion, and flooding, Environmental Research Letters, 18(10), https://doi.org/10.1088/1748-9326/acf4ac
https://doi.org/10.1088/1748-9326/acf4acWang, Z., M. Xiao, M. Liew, A. Jensen, L. Farquharson, V. Romanovsky, D. Nicolsky, C. McComb, B.M. Jones, X. Zhang, and L. Alessa, 2023: Arctic geohazard mapping tools for civil infrastructure planning: A systematic review, Cold Regions Science and Technology, https://doi.org/10.1016/j.coldregions.2023.103969
https://doi.org/10.1016/j.coldregions.2023.103969Wang, Z., M. Xiao, M. Bray, and M. Darrow, 2024: Experimental Investigation of Thermal and Hydraulic Properties of Ice-Rich Saline Permafrost in Northern Alaska, Cold Regions Engineering 2024: Sustainable and Resilient Engineering Solutions for Changing Cold Regions, https://doi.org/10.1061/9780784485460.026
https://doi.org/10.1061/9780784485460.026Schneider von Deimling, T., H. Lee, T. Ingeman-Nielsen, S. Westermann, V. Romanovsky, S. Lamoureux, D.A. Walker, S. Chadburn, E. Trochim, L. Cai, J. Nitzbon, S. Jacobi, and M. Langer, 2021: Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales, The Cryosphere, 15(5), https://doi.org/10.5194/tc-15-2451-2021
https://doi.org/10.5194/tc-15-2451-2021Liew, M., X. Ji, M. Xiao, L. Farquharson, D. Nicolsky, V. Romanovsky, M. Bray, X. Zhang, and C. McComb, 2022: Synthesis of physical processes of permafrost degradation and geophysical and geomechanical properties of permafrost, Cold Regions Science and Technology, 198, https://doi.org/10.1016/j.coldregions.2022.103522
https://doi.org/10.1016/j.coldregions.2022.103522Alessa, L., J. Valentine, S. Moon, C. McComb, S. Hicks, V. Romanovsky, M. Xiao, and A. Kilskey, 2023: Toward a Permafrost Vulnerability Index for Critical Infrastructure, Community Resilience and National Security, Geographies, 3(3):522-542, https://doi.org/10.3390/geographies3030027
https://doi.org/10.3390/geographies3030027Garbis, Z., A. Cox, and R.W. Orttung, 2023: Taming the wildfire infosphere in Interior Alaska: Tailoring risk and crisis communications to specific audiences, International Journal of Disaster Risk Reduction, 91, https://doi.org/10.1016/j.ijdrr.2023.103682
https://doi.org/10.1016/j.ijdrr.2023.103682Schwoerer, T., J.I. Schmidt, M. Berman, P. Bieniek, L.M. Farquharson, D. Nicolsky, J. Powell, R. Roberts, R. Thoman, and R. Ziel, 2023: Increasing multi-hazard climate risk and financial and health impacts on northern homeowners, Ambio, 53:389-405, https://doi.org/10.1007/s13280-023-01951-z.
https://doi.org/10.1007/s13280-023-01951-zReinking, A.K., S.H. Pedersen, K. Elder, N.T. Boelman, T.W. Glass, B.A. Oates, S. Bergen, S. Roberts, L.R. Prugh, T.J. Brinkman, M.B. Coughenour, J.A. Feltner, K.J. Barker, T.W. Bentzen, A.O. Pedersen, N.M. Schmidt, and G.E. Liston, 2022: Collaborative wildlife–snow science: Integrating wildlife and snow expertise to improve research and management, Ecosphere, 13(6), https://doi.org/10.1002/ecs2.4094
https://doi.org/10.1002/ecs2.4094Çoban, E.B., A.R. Syed, D. Pir, and M.I. Mandel, 2021: Towards Large Scale Ecoacoustic Monitoring with Small Amounts of Labeled Data, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, https://doi.org/10.1109/WASPAA52581.2021.9632743
https://doi.org/10.1109/WASPAA52581.2021.9632743Streletskiy, D.A., L.J. Suter, N.I. Shiklomanov, B.N. Porfiriev, and D.O. Eliseev, 2019: Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost, Environmental Research Letters, 14, 10.1088/1748-9326/aaf5e6
https://iopscience.iop.org/article/10.1088/1748-9326/aaf5e6Streletskiy, D.A., A. Maslakov, G. Grosse, N.I. Shiklomanov, L. Farquharson, S. Zwieback, G. Iwahana, A. Bartsch, L. Liu, T. Strozzi, H. Lee, and M.V. Debolskiy, 2025: Thawing permafrost is subsiding in the Northern Hemisphere—review and perspectives, Environmental Research Letters, 20(1), https://doi.org/10.1088/1748-9326/ada2ff
https://doi.org/10.1088/1748-9326/ada2ffOblogov, G.E., A.A. Vasiliev, D.A. Streletskiy, N.I. Shiklomanov, and K.E. Nyland, 2023: Localized Vegetation, Soil Moisture, and Ice Content Offset Permafrost Degradation under Climate Warming, Geosciences, 13(5), https://doi.org/10.3390/geosciences13050129
https://doi.org/10.3390/geosciences13050129Nyland, K.E., N.I. Shiklomanov, D.A. Streletskiy, F.E. Nelson, A.E. Klene, and A.L. Kholodov, 2021: Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra, Polar Geography, 44(3), https://doi.org/10.1080/1088937X.2021.1988000
https://doi.org/10.1080/1088937X.2021.1988000Klene, A.E. and F.E. Nelson, 2019: Urban Geocryology: Mapping Urban–Rural Contrasts in Active-Layer Thickness, Barrow Peninsula, Northern Alaska, Annals of the American Association of Geographers, 109(5):1394-1414, https://doi.org/10.1080/24694452.2018.1549972
https://doi.org/10.1080/24694452.2018.1549972Kaverin, D., G. Malkova, D. Zamolodchikov, N. Shiklomanov, A. Pastukhov, A. Novakovskiy, M. Sadurtdinov, A. Skvortsov, A. Tsarev, A. Pochikalov, S. Malitsky, and G. Kraev, 2021: Long-term active layer monitoring at CALM sites in the Russian European North, Polar Geography, 44(3):203-216, https://doi.org/10.1080/1088937X.2021.1981476
https://doi.org/10.1080/1088937X.2021.1981476Karjalainen, O., J. Aalto, M. Luoto, S. Westermann, V.E. Romanovsky, F.E. Nelson, B. Etzelmüller, and J. Hjort, 2019: Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments, Scientific Data, 6, https://doi.org/10.1038/sdata.2019.37
https://doi.org/10.1038/sdata.2019.37Boike, J., S. Chadburn, J. Martin, S. Zwieback, I.H.J. Althuizen, N. Anselm, L. Cai, S. Coulombe, H. Lee, A.K. Liljedahl, M. Schneebeli, Y. Sjöberg, N. Smith, S.L. Smith, D.A. Streletskiy, S.M. Stuenzi, S. Westermann, and E.J. Wilcox, 2021: Standardized monitoring of permafrost thaw: a user-friendly, multiparameter protocol, Arctic Science, 8(1), https://doi.org/10.1139/as-2021-0007
https://doi.org/10.1139/as-2021-0007Zhang, Z., L. Ma, Y. Liu, J. Ren, and H. Hu, 2021: An experimental study of rain erosion effects on a hydro-/ice-phobic coating pertinent to Unmanned-Arial-System (UAS) inflight icing mitigation, Cold Regions Science and Technology, 181, https://doi.org/10.1016/j.coldregions.2020.103196
https://doi.org/10.1016/j.coldregions.2020.103196Xiong, L., Y. Chen, I.J. Beyerlein, and D. McDowell, 2021: Multiscale modeling of interface-mediated mechanical, thermal, and mass transport in heterogeneous materials: Perspectives and applications: Journal of Materials Research, 36, https://doi.org/10.1557/s43578-021-00293-4
https://doi.org/10.1557/s43578-021-00293-4Veerakumar, R., L. Tian, Haiyang Hu, Y. Liu, and Hui Hu, 2023: An experimental study of dynamic icing process on an Aluminum-Conductor-Steel-Reinforced power cable with twisted outer strands, Experimental Thermal and Fluid Science, 142, https://doi.org/10.1016/j.expthermflusci.2022.110823
https://doi.org/10.1016/j.expthermflusci.2022.110823Peng, Y., R. Ji, T. Phan, W. Gao, V.I. Levitas, and L. Xiong, 2022: An atomistic-to-microscale computational analysis of the dislocation pileup-induced local stresses near an interface in plastically deformed two-phase materials, Acta Materialia, https://doi.org/10.1016/j.actamat.2022.117663
https://doi.org/10.1016/j.actamat.2022.117663Peng, Y., R. Veerakumar, Y. Liu, X. He, and H. Hu, 2020: An experimental study on dynamic ice accretion and its effects on the aerodynamic characteristics of stay cables with and without helical fillets, Journal of Wind Engineering and Industrial Aerodynamics, https://doi.org/10.1016/j.jweia.2020.104326
https://doi.org/10.1016/j.jweia.2020.104326Liu, Y., Z. Zhang, H. Hu, H. Hu, A. Samanta, Q. Wang, and H. Ding, 2019: An experimental study to characterize a surface treated with a novel laser surface texturing technique: Water repellency and reduced ice adhesion, Surface and Coatings Technology, 374, https://doi.org/10.1016/j.surfcoat.2019.06.046
https://doi.org/10.1016/j.surfcoat.2019.06.046L. Li, Y. Liu, Z. Zhang, and H. Hu, 2019: Effects of thermal conductivity of airframe substrate on the dynamic ice accretion process pertinent to UAS inflight icing phenomena, International Journal of Heat and Mass Transfer, 131, https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.132
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.132Gao, L., Y. Liu, and H.Hu, 2020: An experimental investigation on the dynamic glaze ice accretion process over a wind turbine airfoil surface, International Journal of Heat and Mass Transfer, 149, https://doi.org/10.1016/j.ijheatmasstransfer.2019.119120
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119120Fukai, Y., K, Matsuno, A. Fujiwara, K. Suzuki, M.L. Richlen, E. Fachon, and D.M. Anderson, 2021; Impact of Sea-Ice Dynamics on the Spatial Distribution of Diatom Resting Stages in Sediments of the Pacific Arctic Region, Journal of Geophysical Research: Oceans, 126(7), https://doi.org/10.1029/2021JC017223
https://doi.org/10.1029/2021JC017223Anderson, D.M., E. Fachon, R.S. Pickart, P. Lin, A.D. Fischer, M.L. Richlen, V. Uva, M.L. Brosnahan, L. McRaven, F. Bahr, K. Lefebvre, J.M. Grebmeier, S.L. Danielson, Y. Lyu, and Y. Fukai, 2021; Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic, Proceedings of the National Academy of Sciences, 118, https://doi.org/10.1073/pnas.2107387118
https://doi.org/10.1073/pnas.2107387118Anderson, D.M., E. Fachon, K. Hubbard, K.A. Lefebvre, P. Lin, R. Pickart, M. Richlen, G. Sheffield, and C. Van Hemert, 2022; Harmful Algal Blooms in the Alaskan Arctic: An Emerging Threat as the Ocean Warms, Oceanography, 35, https://doi.org/10.5670/oceanog.2022.121
35-anderson.pdf https://doi.org/10.5670/oceanog.2022.121Maxwell, D.N., J.L. Spencer, E.A. Teich, M. Cooke, B. Fromwiller, N. Peterson, L. Nicholas-Figueroa, G.V. Shultz, and K.A. Pratt, 2023; A Guided-Inquiry Activity for Introducing Students to Figures from Primary Scientific Literature, Journal of Chemical Education, 100(5):1788-1795, https://doi.org/10.1021/acs.jchemed.2c00605
https://doi.org/10.1021/acs.jchemed.2c00605Sim, T.G., G.T. Swindles, P.J. Morris, A.J. Baird, A.V. Gallego-Sala, Y. Wang, M. Blaauw, P. Camill, M.Garneau, M. Hardiman, J.Loisel, M. Väliranta, L. Anderson, K. Apolinarska, F. Augustijns, L. Aunina, J. Beaulne, P. Bobek, W. Borken, N. Broothaerts, and H. Zhang, 2023; Regional variability in peatland burning at mid-to high-latitudes during the Holocene, Quaternary Science Reviews, 305, https://doi.org/10.1016/j.quascirev.2023.108020
https://doi.org/10.1016/j.quascirev.2023.108020Varner, R.K., P.M. Crill, S. Frolking, C.K. McCalley, S.A. Burke, J.P. Chanton, M.E. Holmes, Isogenie Project Coordinators, S. Saleska, and M.W. Palance, 2021; Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014, Philosophical Transaction of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 380, https://doi.org/10.1098/rsta.2021.0022
https://doi.org/10.1098/rsta.2021.0022Treat, C.C., M.C. Jones, J. Alder, A.B.K. Sannel, P. Camill, and S. Frolking, 2021; Predicted Vulnerability of Carbon in Permafrost Peatlands With Future Climate Change and Permafrost Thaw in Western Canada, Journal of Geophysical Research: Biogeosciences, 126(5), https://doi.org/10.1029/2020JG005872
https://doi.org/10.1029/2020JG005872Oh, Y., Q. Zhuang, L.R. Welp, L. Liu, X. Lan, S. Basu, E.J. Dlugokencky, L. Bruhwiler, J.B. Miller, S.E. Michel, S. Schwietzke, P. Tans, P. Ciais, and J.P. Chanton, 2022; Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase, Communications Earth & Environment, 3, https://doi.org/10.1038/s43247-022-00488-5
https://doi.org/10.1038/s43247-022-00488-5Kou, D., T. Virtanen, C.C. Treat, J.P Tuovinen, A. Räsänen, S. Juutinen, J. Mikola, M. Aurela, L. Heiskanen, M. Heikkilä, J. Weckström, T. Juselius, S.R. Piilo, J. Deng, Y. Zhang, N. Chaudhary, C. Huang, M. Väliranta, C. Biasi, X. Liu, M. Guo, Q. Zhuang, A. Korhola, and N.J. Shurpali, 2022; Peatland Heterogeneity Impacts on Regional Carbon Flux and Its Radiative Effect Within a Boreal Landscape, Journal of Geophysical Research: Biogeosciences, 127(9), https://doi.org/10.1029/2021JG006774
https://doi.org/10.1029/2021JG006774Hugelius, G., J. Loisel, S. Chadburn, R.B. Jackson, M. Jones, G. MacDonald, M. Marushchak, D. Olefeldt, M. Packalen, M.B. Siewert, C. Treat, M. Turetsky, C. Voigt, and Z. Yu, 2020; Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Earth, Atmospheric, and Planetary Science, 117(34), https://doi.org/10.1073/pnas.1916387117
https://doi.org/10.1073/pnas.1916387117Gong, J., N. Roulet, S. Frolking, H. Peltola, A.M. Laine, N. Kokkonen, and E.S Tuittila, 2020; Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content, Biogeosciences, 17(22), https://doi.org/10.5194/bg-17-5693-2020
https://doi.org/10.5194/bg-17-5693-2020Gunther, A.B., P. Camill, C.E. Umbanhowar Jr., A. Stansfield, and E.N. Dethier, 2024; Using Relationships Between Vegetation and Surface Soil Biogeochemical Properties to Assess Regional Soil Carbon Inventories for South Baffin Island, Nunavut, Canada, Journal of Geophysical Research: Biogeosciences, 129(6), https://doi.org/10.1029/2023JG007776
https://doi.org/10.1029/2023JG007776Svensson, G., S. Murto, M.D. Shupe, F. Pithan, L. Magnusson, J.J. Day, J.D. Doyle, I.A. Renfrew, T. Spengler, and T. Vihma, 2023; Warm air intrusions reaching the MOSAiC expedition in April 2020—The YOPP targeted observing period (TOP), Elementa: Science of the Anthropocene, 11, https://doi.org/10.1525/elementa.2023.00016
https://doi.org/10.1525/elementa.2023.00016Guy, H., I.M. Brooks, D.D. Turner, C.J. Cox, P.M. Rowe, M.D. Shupe, V.P. Walden, and R.R. Neely III, 2023; Observations of Fog-Aerosol Interactions Over Central Greenland, Journal of Geophysical Research: Atmospheres, 128(13), https://doi.org/10.1029/2023JD038718
https://doi.org/10.1029/2023JD038718Schwartz, Lane, 2022; Primum Non Nocere: Before working with Indigenous data, the ACL must confront ongoing colonialism, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2:724-731, https://doi.org/10.18653/v1/2022.acl-short.82
https://doi.org/10.18653/v1/2022.acl-short.82Park, H., L. Schwartz, and F. Tyers, 2021: Expanding Universal Dependencies for Polysynthetic Languages: A Case of St. Lawrence Island Yupik, Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas: 131-142, https://doi.org/10.18653/v1/2021.americasnlp-1.14
https://doi.org/10.18653/v1/2021.americasnlp-1.14Hunt, B., E. Chen, S.L.R. Schreiner, and L. Schwartz, 2019: Community lexical access for an endangered polysynthetic language: An electronic dictionary for St. Lawrence Island Yupik, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations): 122-126, https://doi.org/10.18653/v1/N19-4021
https://doi.org/10.18653/v1/N19-4021Berens M.J., A.B. Michaud, E. VanderJeugdt, I. Miah, F.W. Sutor, D. Emerson, W.B. Bowden, L. Kinsman-Costello, M.N. Weintraub, and E.M. Herndon, 2024: Phosphorus Interactions with Iron in Undisturbed and Disturbed Arctic Tundra Ecosystems, Environmental Science & Technology, 58(26), https://doi.org/10.1021/acs.est.3c09072
https://doi.org/10.1021/acs.est.3c09072Koch J.C., M.J. Bogard, D.E. Butman, K. Finaly, B. Ebel, J. James, S.E. Johnston, M.T. Jorgenson, N.J. Pastick, R.G.M. Spencer, R. Striegl, M. Walvoord, and K.P. Wickland, 2022: Heterogeneous Patterns of Aged Organic Carbon Export Driven by Hydrologic Flow Paths, Soil Texture, Fire, and Thaw in Discontinuous Permafrost Headwaters, Global Biogeochemical Cycles, 36(4), https://doi.org/10.1029/2021GB007242
https://doi.org/10.1029/2021GB007242Kanevskiy, M., Y. Shur, D.A. (Skip) Walker, D.A. T. Jorgenson, M.K. Raynolds, J.L. Peirce, B.M. Jones, M. Buchhorn, G. Matyshak, H. Bergstedt, A.L. Breen, B. Connor, R. Daanen, A.Liljedahl, V.E. Romanovsky, and E. Watson-Cook, 2022: The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska, USA, Arctic Science, 8, https://doi.org/10.1139/as-2021-0024
https://doi.org/10.1139/as-2021-0024Kanevskiy, M., Y. Shur, N.H. Bigelow, K.L. Bjella, T.A. Douglas, D. Fortier, B.M. Jones, and M.T. Jorgenson, 2022: Yedoma Cryostratigraphy of Recently Excavated Sections of the CRREL Permafrost Tunnel Near Fairbanks, Alaska, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.758800
https://doi.org/10.3389/feart.2021.758800Jorgenson, M.T., M.Z. Kanevskiy, J.C. Jorgenson, A. Liljedahl, Y. Shur, H. Epstein, K. Kent, C.G. Griffin, R. Daanen, M. Boldenow, K. Orndahl, C. Witharana, and B.M. Jones, 2022: Rapid transformation of tundra ecosystems from ice-wedge degradation, Global and Planetary Change, 216, https://doi.org/10.1016/j.gloplacha.2022.103921
https://doi.org/10.1016/j.gloplacha.2022.103921Jorgenson, M.T., M. Kanevskiy, C. Roland, K. Hill, D. Schirokauer, S. Stehn, B. Schroeder, and Y. Shur, 2022: Repeated Permafrost Formation and Degradation in Boreal Peatland Ecosystems in Relation to Climate Extremes, Fire, Ecological Shifts, and a Geomorphic Legacy, Atmosphere, 13(8), https://doi.org/10.3390/atmos13081170
https://doi.org/10.3390/atmos13081170Jones, B.M., M.Z. Kanevskiy, A.D. Parsekian, H. Bergstedt, M.K. Ward Jones, R.C. Rangel, K.M. Hinkel, and Y. Shur, 2023: Rapid Saline Permafrost Thaw Below a Shallow Thermokarst Lake in Arctic Alaska, Geophysical Research Letters, 50(22), https://doi.org/10.1029/2023GL105552
https://doi.org/10.1029/2023GL105552Jones, B.M., G. Grosse, L.M. Farquharson, P. Roy-Léveillée, A. Veremeeva, M.Z. Kanevskiy, B.V. Gaglioti, A.L. Breen, A.D. Parsekian, M. Ulrich, and K.M. Hinkel, 2022: Lake and drained lake basin systems in lowland permafrost regions, Nature Reviews Earth & Environment, 3:85-98, https://doi.org/10.1038/s43017-021-00238-9
https://doi.org/10.1038/s43017-021-00238-9Heijmans, M.M., R.Í. Magnússon, M.J. Lara, G.V. Frost, I.H. Myers-Smith, J. Van Huissteden, M.T. Jorgenson, A.N. Fedorov, H.E. Epstein, D.M. Lawrence, and J. Limpens, 2022: Tundra vegetation change and impacts on permafrost, Nature Reviews Earth & Environment, 3:68-84, https://doi.org/10.1038/s43017-021-00233-0
https://doi.org/10.1038/s43017-021-00233-0Bristol, E. M., C.T. Connolly, T.D. Lorenson, B.M. Richmond, A.G. Ilgen, R.C. Choens, D.L. Bull, M. Kanevskiy, G. Iwahana, B.M. Jones, and J.W. McClelland, 2021: Geochemistry of Coastal Permafrost and Erosion-Driven Organic Matter Fluxes to the Beaufort Sea Near Drew Point, Alaska, Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.598933
https://doi.org/10.3389/feart.2020.598933Bergstedt, H., B.M. Jones, D. Walker, J. Peirce, A. Bartsch, G. Pointner, M. Kanevskiy, M. Raynolds, and M. Buchhorn, 2023: The spatial and temporal influence of infrastructure and road dust on seasonal snowmelt, vegetation productivity, and early season surface water cover in the Prudhoe Bay Oilfield, Arctic Science, 9, https://doi.org/10.1139/as-2022-0013
https://doi.org/10.1139/as-2022-0013Bergstedt, H., B.M. Jones, K. Hinkel, L. Farquharson, B.V. Gaglioti, A.D. Parsekian, M. Kanevskiy, N. Ohara, Noriaki A.L. Breen, R.C. Rangel, G. Grosse, and I. Nitze, 2021: Remote Sensing-Based Statistical Approach for Defining Drained Lake Basins in a Continuous Permafrost Region, North Slope of Alaska, Remote Sensing, 13, https://doi.org/10.3390/rs13132539
remotesensing-13-02539-v2.pdf https://doi.org/10.3390/rs13132539See, C. R, A.M. Virkkala, S.M. Natali, B.M. Rogers, M. Mauritz, C. Biasi, S. Bokhorst, J. Boike, M.S. Bret-Harte, G. Celis, N. Chae, T.R. Christensen, E.A.G Schuur, and Mu, 2024: Decadal increases in carbon uptake offset by respiratory losses across northern permafrost ecosystems, Nature Climate Change, 14:853-862, https://doi.org/10.1038/s41558-024-02057-4
s41558-024-02057-4.pdf https://doi.org/10.1038/s41558-024-02057-4Schuur, E.A.G. B.W. Abbott, R. Commane, J. Ernakovich, E. Euskirchen, G. Hugelius, G. Grosse, M.Jones, C. Koven, V. Leshyk, D. Lawrence, and M.M. Loranty, 2022: Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic, Annual Review of Environment and Resources, 47:343-371, https://doi.org/10.1146/annurev-environ-012220-011847
https://doi.org/10.1146/annurev-environ-012220-011847Rodenhizer, Heidi and Natali, Susan M. and Mauritz, Marguerite and Taylor, Meghan A. and Celis, Gerardo and Kadej, Stephanie and Kelley, Allison K. and Lathrop, Emma R. and Ledman, Justin and Pegoraro, Elaine F. and Salmon, Verity G. and Schädel, Christin, 2023: Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra, Global Change Biology, 29(22), https://doi.org/10.1111/gcb.16936
https://doi.org/10.1111/gcb.16936Ramage, J., M. Kuhn, A. Virkkala, C. Voigt, M.E. Marushchak, A. Bastos, C. Biasi, J.G. Canadell, P. Ciais, E. LópezBlanco, S.M. Natali, and D. Olefeldt, 2024: The Net GHG Balance and Budget of the Permafrost Region (2000–2020) From Ecosystem Flux Upscaling, Global Biogeochemical Cycles, 38(4), https://doi.org/10.1029/2023GB007953
https://doi.org/10.1029/2023GB007953Monhonval, A., C. Hirst, J. Strauss, E. AG Schuur, and S. Opfergelt, 2023: Strontium isotopes trace the dissolution and precipitation of mineral organic carbon interactions in thawing permafrost, Geoderma, 433, https://doi.org/10.1016/j.geoderma.2023.116456
https://doi.org/10.1016/j.geoderma.2023.116456Hugelius, G., J. Ramage, E. Burke, A. Chatterjee, T.L. Smallman, T. Aalto, A. Bastos, C. Biasi, J.G. Canadell, N. Chandra, F. Chevallier, P. Ciais, J. Chang, L. Feng, M.W. Jones, T. Kleinen, M. Kuhn, and Lauer, 2024: Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods, Global Biogeochemical Cycles, 38(10), https://doi.org/10.1029/2023GB007969
https://doi.org/10.1029/2023GB007969Hirst, C., A. Monhonval, E. Mauclet, M. Thomas, M. Villani, J. Ledman, E.A G Schuur, and S. Opfergelt, 2023: Evidence for late winter biogeochemical connectivity in permafrost soils, Communications Earth & Environment, 4, https://doi.org/10.1038/s43247-023-00740-6
s43247-023-00740-6.pdf https://doi.org/10.1038/s43247-023-00740-6Jäger, M.B., D.Ferguson, O.Huntington, M.Johnson, N.Johnson, A.Juan, S.Larson, P.Pulsifer, T.Reader, C.Strawhacker, A.Walker, D.Whiting, and J.Wilson, 2019: Building an Indigenous Foods Knowledges Network Through Relational Accountability, Journal of Agriculture, Food Systems, and Community Development, 9, https://doi.org/10.5304/jafscd.2019.09B.005
https://doi.org/10.5304/jafscd.2019.09B.005Chi, G., S. Zhou, M. Mucioki, J. Miller, E. Korkut, L. Howe, J. Yin, D. Holen, H. Randell, A. Akyildiz, K.E. Halvorsen, L. Fowler, J.Ford, James and A.Tickamyer, 2024: Climate impacts on migration in the Arctic North America: existing evidence and research recommendations, Regional Environmental Change, 24, https://doi.org/10.1007/s10113-024-02212-9
https://doi.org/10.1007/s10113-024-02212-9Abdar, Moloud, M.E. Basiri, J. Yin, M. Habibnezhad, G. Chi, S. Nemati, and S. Asadi, 2020: Energy choices in Alaska: Mining people's perception and attitudes from geotagged tweets, Renewable and Sustainable Energy Reviews, 124, https://doi.org/10.1016/j.rser.2020.109781
https://doi.org/10.1016/j.rser.2020.109781Thomas, M. A., A. Mota, B.M. Jones, Benjamin, R.C. Choens, J.M. Frederick, and D.L. Bull, 2020: Geometric and Material Variability Influences Stress States Relevant to Coastal Permafrost Bluff Failure, Frontiers Science, 8, https://doi.org/10.3389/feart.2020.00143.
feart-08-00143.pdf https://doi.org/10.3389/feart.2020.00143Liew, M, M. Xiao, B.M. Jones, L.M. Farquharson, and V.E. Romanovsky, 2020: Prevention and control measures for coastal erosion in northern high-latitude communities: a systematic review based on Alaskan case studies, Environmental Research Letters, 15(9), https://doi.org/10.1088/1748-9326/ab9387
Liew_2020_Environ._Res._Lett._15_093002.pdf https://doi.org/10.1088/1748-9326/ab9387Liew, M., M. Xiao, L. Farquharson, D. Nicolsky, A. Jensen, V. Romanovsky, J. Peirce, L. Alessa, C. McComb, X. Zhang, and B. Jones, 2022: Understanding Effects of Permafrost Degradation and Coastal Erosion on Civil Infrastructure in Arctic Coastal Villages: A Community Survey and Knowledge Co-Production, Journal of Marine Science and Engineering, 10(3), https://doi.org/10.3390/jmse10030422.
jmse-10-00422.pdf https://doi.org/10.3390/jmse10030422Lantz, T.C., N.D. Moffat., B.M. Jones, Q.T Chen, and E. Craig., 2020: Mapping Exposure to Flooding in Three Coastal Communities on the North Slope of Alaska Using Airborne LiDAR, Cosatal Management, 48(2):96-117, https://doi.org/10.1080/08920753.2020.1732798.
https://doi.org/10.1080/08920753.2020.1732798Mercer, J.L., J. Nymand, L.E. Culler, R. Lynge, S. Lund, B. Gregersen, B. Makens, R.A. Virginia, and K.G. Moore, 2022: Bilateral collaboration between the Greenland (Kalaallit Nunaat) and United States Research Communities - from a vision to everyday practice. Polar Record, vol 58, https://doi.org/10.1017/S0032247422000298.
https://doi.org/10.1017/S0032247422000298Bahramvash, S.S., V.P. Walden, J.W. Hannigan, and D.D. Turner, 2022: Retrievals of Ozone in the Troposphere and Lower Stratosphere Using FTIR Observations Over Greenland. IEEE Transactions on Geoscience and Remote Sensing, vol 60, https://doi.org/10.1109/TGRS.2022.3180626.
https://doi.org/10.1109/TGRS.2022.3180626Stillwell, R.A., R.R. Neely, J.P. Thayer, V.P. Walden, M.D. Shupe, and N.B. Miller, 2019: Radiative Influence of Horizontally Oriented Ice Crystals over Summit, Greenland" Journal of Geophysical Research: Atmospheres, 124 (22), https://doi.org/10.1029/2018JD028963.
https://doi.org/10.1029/2018JD028963Bennartz, R., F. Fell, C. Pettersen, M.D. Shupe, and D. Schuettemeyer, 2019: Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmospheric Chemistry and Physics, 19 (12): 8101–8121, https://doi.org/10.5194/acp-19-8101-2019.
https://doi.org/10.5194/acp-19-8101-2019Gallagher, M.R., M.D. Shupe, and N.B. Miller, 2018: Impact of Atmospheric Circulation on Temperature, Clouds, and Radiation at Summit Station, Greenland, with Self-Organizing Maps. Journal of Climate, 31 (21): 8895–8915, https://doi.org/10.1175/JCLI-D-17-0893.1.
https://doi.org/10.1175/JCLI-D-17-0893.1Cox, C.J., D.C. Noone, M. Berkelhammer, M.D. Shupe, W.D. Neff, N.B. Miller, V.P. Walden, and K. Steffen, 2019: Supercooled liquid fogs over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics, 19 (11): 7467–7485, https://doi.org/10.5194/acp-19-7467-2019.
https://doi.org/10.5194/acp-19-7467-2019Lacour, A., H. Chepfer, N.B. Miller, M.D. Shupe, V. Noel, X. Fettweis, H. Gallee, J.E. Kay, R. Guzman, and J. Cole, 2018: How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet. Journal of Climate , 31 (22): 9293–9312, https://doi.org/10.1175/JCLI-D-18-0023.1.
https://doi.org/10.1175/JCLI-D-18-0023.1Guy, H., I.M. Brooks, K.S. Carslaw, B.J. Murray, V.P. Walden, M.D. Shupe, C. Pettersen, D.D. Turner, C.J. Cox, W.D. Neff, R. Bennartz, and R. R. Neely III, 2021: Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics , 21 (19): 15351–15374, https://doi.org/10.5194/acp-21-15351-2021.
https://doi.org/10.5194/acp-21-15351-2021Arouf, A., H. Chepfer, T. Vaillant de Guélis, M. Chiriaco, M.D. Shupe, R. Guzman, A. Feofilov, P. Raberanto, T.S. L'Ecuyer, S. Kato, and M.R. Gallagher, 2022: The surface longwave cloud radiative effect derived from space lidar observations. Atmospheric Measurement Techniques , 15(12): 3893–3923, https://doi.org/10.5194/amt-15-3893-2022.
https://doi.org/10.5194/amt-15-3893-2022Pantaleo, A., M.R. Albert, H.T Snyder, S. Doig, T. Oshima, and N.E. Hagelqvist, 2022: Modeling a sustainable energy transition in northern Greenland: Qaanaaq case study. Sustainable Energy Technologies and Assessments, vol 54, 102774, https://doi.org/10.1016/j.seta.2022.102774.
https://doi.org/10.1016/j.seta.2022.102774Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2020: Historical incidence of mid?autumn wind storms in New England" Meteorological Applications , 27 (5), https://doi.org/10.1002/met.1952.
https://doi.org/10.1002/met.1952
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Hazuková, V., B.T. Burpee, I. McFarlane-Wilson, and J.E. Saros, 2021: Under Ice and Early Summer Phytoplankton Dynamics in Two Arctic Lakes with Differing DOC. Journal of Geophysical Research: Biogeosciences, vol 126 , https://doi.org/10.1029/2020JG005972.
https://doi.org/10.1029/2020JG005972
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2022: Association between recent U.S. northeast precipitation trends and Greenland blocking. International Journal of Climatology, 42 (11): 5682-5693, https://doi.org/10.1002/joc.7555.
https://doi.org/10.1002/joc.7555Daley, K., R. Jamieson, D. Rainham, L.T. Hansen, and S.L. Harper, 2022: Microbial risk assessment and mitigation options for wastewater treatment in Arctic Canada. Microbial Risk Analysis , vol 20, https://doi.org/10.1016/j.mran.2021.100186.
https://doi.org/10.1016/j.mran.2021.100186
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Landers, K., and D. Streletskiy, 2023: (Un)frozen foundations: A study of permafrost construction practices in Russia, Alaska, and Canada. Ambio, 52: 1170–1183, https://doi.org/10.1007/s13280-023-01866-9.
https://doi.org/10.1007/s13280-023-01866-9
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Streletskiy, D.A., S. Clemens, J-P. Lanckman, and N.I. Shiklomanov, 2023: The costs of Arctic infrastructure damages due to permafrost degradation. Environmental Research Letters , v.18, https://doi.org/10.1088/1748-9326/acab18.
https://doi.org/10.1088/1748-9326/acab18
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Rozmiarek, K. S., et al., 2021: An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments. Atmospheric Measurement Techniques, 14(11): 7045-7067, doi: 10.5194/amt-14-7045-2021.
https://doi.org/10.5194/amt-14-7045-2021
Closing the Water Vapor Exchange Budget Between the Ice Sheets and Free AtmosphereLines, A., J. Elliot, L. R. Ray, 2022: Incipient Immobilization Detection for Lightweight Rovers Operating in Deformable Terrain. Journal of Autonomous Vehicles and Systems 2(3), doi: 10.1115/1.4056408.
https://doi.org/10.1115/1.4056408
Dynamic Vehicle-Terrain Modeling and Control of Lightweight Ground Robots in Snow and SandSpencer, J. L., D. N. Maswell, K. R. Erickson, D. Wall, L. Nicholas-Figueroa, K. A. Pratt,G. V. Shultz, 2022: Cultural Relevance in Chemistry Education: Snow Chemistry and the Iñupiaq Community. Journal of chemical education 99(1):363-372, doi: 10.1021/acs.jche%20med.1c00480.
https://doi.org/doi.org/10.1021/acs.jche%20med.1c00480
Researching apun: Students Using Local, Traditional, and Science Knowledge Bases to Investigate Arctic Snow ProcessesMichaud, A. B., S. Apollonio, 2022: Overwinter oxygen and silicate dynamics in a high Arctic lake (Immerk Lake, Devon Island, Canada). Inland Waters 12(3):418-426, doi: 10.1080/20442041.2022.2063623.
https://doi.org/10.1080/20442041.2022.2063623
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemHudson, J. M., A. B. Michaud, D. Emerson, Y. Chin, 2022: Spatial distribution and biogeochemistry of redox active species in arctic sedimentary porewaters and seeps. Environmental Science: Processes & Impacts 24(3):426-438, doi: 10.1039/D1EM00505G.
https://doi.org/10.1039/D1EM00505G
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemMiller, A. C., T. Ravens, 2022: Assessing Coastal Road Flood Risk in Arctic Alaska, a Case Study from Hooper Bay. Journal of Marine Science and Engineering 10(3), doi: 10.3390/jmse10030406.
https://doi.org/10.3390/jmse10030406
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchBerry, K., R. D. Horan, D. Finnoff, R. Pompa, P. Dasak, 2022: Investing to Both Prevent and Prepare for COVID-XX. EcoHealth 19(1):114-123, doi: 10.1007/s10393-022-01576-w.
https://doi.org/10.1007/s10393-022-01576-w
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchDelwiche, K. B., 2020: FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth system science data, doi: 10.5194.
https://doi.org/10.5194
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationVirkkala, A. and Coauthors, 2021: Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology 27(17):4040-4059, doi: 10.1111/gcb.15659.
https://doi.org/10.1111/gcb.15659
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationPihl, E. and Coauthors, 2021: Ten new insights in climate science 2020 – a horizon scan. Global Sustainability 4, doi: 10.1017/sus.2021.2.
https://doi.org/10.1017/sus.2021.2
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationGarnello, A., S. Marchenko, D. Nicolsky, V. Romanovsky, J. Ledman, G. Celis, C. Schadel, Y. Luo, E. A. Schuur, 2021: Projecting Permafrost Thaw of Sub‐Arctic Tundra With a Thermodynamic Model Calibrated to Site Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006218.
https://doi.org/10.1029/2020JG006218
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationMauritz, M., E. Pegoraro, K. Ogle, C. Ebert, E. Schurr, 2021: Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006000.
https://doi.org/10.1029/2020JG006000
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationSchurr, E. A. G. and Coauthors, 2021: Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the Atmosphere Over 15 Years of Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006044.
https://doi.org/10.1029/2020JG006044
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationNatali, S. M. and Coauthors, 2019: Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change 9(11):852-857, doi: 10.1038/s41558-019-0592-8.
https://doi.org/10.1038/s41558-019-0592-8
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationStraneo, F., D.A. Slater, C. Bouchard, M.R. Cape, M. Carey, L. Ciannelli, J. Holte, P. Matrai, K. Laidre, C. Little, L. Meire, H. Seroussi, and M. Vernet, 2022: An interdisciplinary perspective on Greenland’s changing coastal margins. Oceanography 35(3–4):106–117, doi: 10.5670/oceanog.2022.128.
https://doi.org/10.5670/oceanog.2022.128Steiro, V. D., J.C. Ryan, S.W. Cooley, L.C. Smith, B. Dale, A.H. Lynch, and S. Veland, 2021: Changes in sea ice travel conditions in Uummannaq Fjord, Greenland (1985–2019) assessed through remote sensing and transportation accessibility modeling. Polar Geography, 44 (4): 282-296, doi:10.1080/1088937X.2021.1938271.
https://doi.org/10.1080/1088937X.2021.1938271Jones, B.M., L.M. Farquharson, C.A. Baughman, R.M. Buzard, C.D. Arp, G. Grosse, D.L. Bull, F. Guenther, F. Urban, J.L. Kasper, J.M. Frederick, M. Thomas, C. Jones, A. Mota, S. Dallimore, C. Tweedie, C. Maio, D.H. Mann, B. Richmond, A. Gibbs, M. Xiao, T. Sachs, G. Iwahana, M. Kanevskiy, and V.E. Romanovsky, 2018: A decade of high spatiotemporal satellite image observations highlight complexities associated with coastal permafrost bluff erosion in the Arctic. Environmental Research Letters. 13, 115001, doi:10.1088/1748-9326/aae471.
https://doi.org/10.1088/1748-9326/aae471