Air and soil temperatures in the Appalachian Highlands, Eastern USA: lapse rates, gradients, and applications
Walegur, M.T., F.E. Nelson, and K.E. Nyland, 2025: Air and soil temperatures in the Appalachian Highlands, Eastern USA: lapse rates, gradients, and applications, Theoretical and Applied Climatology, 156(204), https://doi.org/10.1007/s00704-025-05410-5
Despite strong terrain influences on the climate of the Appalachian Highlands in the eastern USA, few attempts have been made to systematically collect air and soil temperature data from summits and other high-elevation sites in this region. This paper reports on the Appalachian Highlands Environmental Monitoring (AHEM) mesoscale climate network, a series of 20 high-elevation sites recording temperature at hourly intervals from 1996 to 2008 on Appalachian summits along a 1500 km transect extending from Maine to North Carolina. Observations included air temperature, ground surface temperature, and soil temperature at 25 cm depth. Data were analyzed with respect to four issues: (1) accuracy of air temperature estimates and comparisons with previous studies; (2) relations between the altitude of the 0 °C mean annual air temperature and latitudinal position; (3) variations in frequency distributions of freeze–thaw days with latitude; and (4) the accuracy of an existing soil temperature classification scheme in the Appalachians. Analytic results include: (1) topographically informed interpolation techniques provide more accurate temperature estimates than traditional methods; (2) the elevation of the 0 °C mean annual air temperature decreases systematically with increasing latitude; (3) the frequency distributions of freeze–thaw days are related directly to latitudinal position; (4) classifications of mean annual soil temperature based on data from the 25 cm level are in general agreement with an existing U.S. Department of Agriculture soil-temperature map suggesting permafrost underlying high-elevation locations in the northern Appalachian Highlands..