Publications
Angeler, D., Allen, C. R., Carnaval, A., 2020: Convergence science in the Anthropocene: Navigating the known and unknown. People and Nature 2(1): 96-102, doi:10.1002/pan3.10069.
https://doi.org/10.1002/pan3.10069
Adaptive Capacity and Resilience in the New Arctic: Identifying Pathways to Equitable, Desirable Outcomes for People and Nature Through Convergence
Taylor, M. A., G. Celis, J. D. Ledman, R. Bracho, E. A. Schurr, 2020: Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost Degradation. Journal of Geophysical Research: Biogeosciences 123(9):2695-2710, doi: 10.1029/2018JG004444
https://doi.org/10.1029/2018JG004444
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost Degradation
Mercer, J.L., J. Nymand, L.E. Culler, R. Lynge, S. Lund, B. Gregersen, B. Makens, R.A. Virginia, and K.G. Moore, 2022: Bilateral collaboration between the Greenland (Kalaallit Nunaat) and United States Research Communities - from a vision to everyday practice. Polar Record, vol 58, https://doi.org/10.1017/S0032247422000298.
https://doi.org/10.1017/S0032247422000298Bahramvash, S.S., V.P. Walden, J.W. Hannigan, and D.D. Turner, 2022: Retrievals of Ozone in the Troposphere and Lower Stratosphere Using FTIR Observations Over Greenland. IEEE Transactions on Geoscience and Remote Sensing, vol 60, https://doi.org/10.1109/TGRS.2022.3180626.
https://doi.org/10.1109/TGRS.2022.3180626Stillwell, R.A., R.R. Neely, J.P. Thayer, V.P. Walden, M.D. Shupe, and N.B. Miller, 2019: Radiative Influence of Horizontally Oriented Ice Crystals over Summit, Greenland" Journal of Geophysical Research: Atmospheres, 124 (22), https://doi.org/10.1029/2018JD028963.
https://doi.org/10.1029/2018JD028963Bennartz, R., F. Fell, C. Pettersen, M.D. Shupe, and D. Schuettemeyer, 2019: Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmospheric Chemistry and Physics, 19 (12): 8101–8121, https://doi.org/10.5194/acp-19-8101-2019.
https://doi.org/10.5194/acp-19-8101-2019Gallagher, M.R., M.D. Shupe, and N.B. Miller, 2018: Impact of Atmospheric Circulation on Temperature, Clouds, and Radiation at Summit Station, Greenland, with Self-Organizing Maps. Journal of Climate, 31 (21): 8895–8915, https://doi.org/10.1175/JCLI-D-17-0893.1.
https://doi.org/10.1175/JCLI-D-17-0893.1Cox, C.J., D.C. Noone, M. Berkelhammer, M.D. Shupe, W.D. Neff, N.B. Miller, V.P. Walden, and K. Steffen, 2019: Supercooled liquid fogs over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics, 19 (11): 7467–7485, https://doi.org/10.5194/acp-19-7467-2019.
https://doi.org/10.5194/acp-19-7467-2019Lacour, A., H. Chepfer, N.B. Miller, M.D. Shupe, V. Noel, X. Fettweis, H. Gallee, J.E. Kay, R. Guzman, and J. Cole, 2018: How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet. Journal of Climate , 31 (22): 9293–9312, https://doi.org/10.1175/JCLI-D-18-0023.1.
https://doi.org/10.1175/JCLI-D-18-0023.1Guy, H., I.M. Brooks, K.S. Carslaw, B.J. Murray, V.P. Walden, M.D. Shupe, C. Pettersen, D.D. Turner, C.J. Cox, W.D. Neff, R. Bennartz, and R. R. Neely III, 2021: Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics , 21 (19): 15351–15374, https://doi.org/10.5194/acp-21-15351-2021.
https://doi.org/10.5194/acp-21-15351-2021Arouf, A., H. Chepfer, T. Vaillant de Guélis, M. Chiriaco, M.D. Shupe, R. Guzman, A. Feofilov, P. Raberanto, T.S. L'Ecuyer, S. Kato, and M.R. Gallagher, 2022: The surface longwave cloud radiative effect derived from space lidar observations. Atmospheric Measurement Techniques , 15(12): 3893–3923, https://doi.org/10.5194/amt-15-3893-2022.
https://doi.org/10.5194/amt-15-3893-2022Pantaleo, A., M.R. Albert, H.T Snyder, S. Doig, T. Oshima, and N.E. Hagelqvist, 2022: Modeling a sustainable energy transition in northern Greenland: Qaanaaq case study. Sustainable Energy Technologies and Assessments, vol 54, 102774, https://doi.org/10.1016/j.seta.2022.102774.
https://doi.org/10.1016/j.seta.2022.102774Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2020: Historical incidence of mid?autumn wind storms in New England" Meteorological Applications , 27 (5), https://doi.org/10.1002/met.1952.
https://doi.org/10.1002/met.1952
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Hazuková, V., B.T. Burpee, I. McFarlane-Wilson, and J.E. Saros, 2021: Under Ice and Early Summer Phytoplankton Dynamics in Two Arctic Lakes with Differing DOC. Journal of Geophysical Research: Biogeosciences, vol 126 , https://doi.org/10.1029/2020JG005972.
https://doi.org/10.1029/2020JG005972
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2022: Association between recent U.S. northeast precipitation trends and Greenland blocking. International Journal of Climatology, 42 (11): 5682-5693, https://doi.org/10.1002/joc.7555.
https://doi.org/10.1002/joc.7555Daley, K., R. Jamieson, D. Rainham, L.T. Hansen, and S.L. Harper, 2022: Microbial risk assessment and mitigation options for wastewater treatment in Arctic Canada. Microbial Risk Analysis , vol 20, https://doi.org/10.1016/j.mran.2021.100186.
https://doi.org/10.1016/j.mran.2021.100186
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Landers, K., and D. Streletskiy, 2023: (Un)frozen foundations: A study of permafrost construction practices in Russia, Alaska, and Canada. Ambio, 52: 1170–1183, https://doi.org/10.1007/s13280-023-01866-9.
https://doi.org/10.1007/s13280-023-01866-9
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Streletskiy, D.A., S. Clemens, J-P. Lanckman, and N.I. Shiklomanov, 2023: The costs of Arctic infrastructure damages due to permafrost degradation. Environmental Research Letters , v.18, https://doi.org/10.1088/1748-9326/acab18.
https://doi.org/10.1088/1748-9326/acab18
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Rozmiarek, K. S., et al., 2021: An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments. Atmospheric Measurement Techniques, 14(11): 7045-7067, doi: 10.5194/amt-14-7045-2021.
https://doi.org/10.5194/amt-14-7045-2021
Closing the Water Vapor Exchange Budget Between the Ice Sheets and Free AtmosphereLines, A., J. Elliot, L. R. Ray, 2022: Incipient Immobilization Detection for Lightweight Rovers Operating in Deformable Terrain. Journal of Autonomous Vehicles and Systems 2(3), doi: 10.1115/1.4056408.
https://doi.org/10.1115/1.4056408
Dynamic Vehicle-Terrain Modeling and Control of Lightweight Ground Robots in Snow and SandSpencer, J. L., D. N. Maswell, K. R. Erickson, D. Wall, L. Nicholas-Figueroa, K. A. Pratt,G. V. Shultz, 2022: Cultural Relevance in Chemistry Education: Snow Chemistry and the Iñupiaq Community. Journal of chemical education 99(1):363-372, doi: 10.1021/acs.jche%20med.1c00480.
https://doi.org/doi.org/10.1021/acs.jche%20med.1c00480
Researching apun: Students Using Local, Traditional, and Science Knowledge Bases to Investigate Arctic Snow ProcessesMichaud, A. B., S. Apollonio, 2022: Overwinter oxygen and silicate dynamics in a high Arctic lake (Immerk Lake, Devon Island, Canada). Inland Waters 12(3):418-426, doi: 10.1080/20442041.2022.2063623.
https://doi.org/10.1080/20442041.2022.2063623
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemHudson, J. M., A. B. Michaud, D. Emerson, Y. Chin, 2022: Spatial distribution and biogeochemistry of redox active species in arctic sedimentary porewaters and seeps. Environmental Science: Processes & Impacts 24(3):426-438, doi: 10.1039/D1EM00505G.
https://doi.org/10.1039/D1EM00505G
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemMiller, A. C., T. Ravens, 2022: Assessing Coastal Road Flood Risk in Arctic Alaska, a Case Study from Hooper Bay. Journal of Marine Science and Engineering 10(3), doi: 10.3390/jmse10030406.
https://doi.org/10.3390/jmse10030406
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchBerry, K., R. D. Horan, D. Finnoff, R. Pompa, P. Dasak, 2022: Investing to Both Prevent and Prepare for COVID-XX. EcoHealth 19(1):114-123, doi: 10.1007/s10393-022-01576-w.
https://doi.org/10.1007/s10393-022-01576-w
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchDelwiche, K. B., 2020: FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth system science data, doi: 10.5194.
https://doi.org/10.5194
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationVirkkala, A. and Coauthors, 2021: Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology 27(17):4040-4059, doi: 10.1111/gcb.15659.
https://doi.org/10.1111/gcb.15659
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationPihl, E. and Coauthors, 2021: Ten new insights in climate science 2020 – a horizon scan. Global Sustainability 4, doi: 10.1017/sus.2021.2.
https://doi.org/10.1017/sus.2021.2
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationGarnello, A., S. Marchenko, D. Nicolsky, V. Romanovsky, J. Ledman, G. Celis, C. Schadel, Y. Luo, E. A. Schuur, 2021: Projecting Permafrost Thaw of Sub‐Arctic Tundra With a Thermodynamic Model Calibrated to Site Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006218.
https://doi.org/10.1029/2020JG006218
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationMauritz, M., E. Pegoraro, K. Ogle, C. Ebert, E. Schurr, 2021: Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006000.
https://doi.org/10.1029/2020JG006000
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationSchurr, E. A. G. and Coauthors, 2021: Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the Atmosphere Over 15 Years of Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006044.
https://doi.org/10.1029/2020JG006044
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationNatali, S. M. and Coauthors, 2019: Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change 9(11):852-857, doi: 10.1038/s41558-019-0592-8.
https://doi.org/10.1038/s41558-019-0592-8
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationStraneo, F., D.A. Slater, C. Bouchard, M.R. Cape, M. Carey, L. Ciannelli, J. Holte, P. Matrai, K. Laidre, C. Little, L. Meire, H. Seroussi, and M. Vernet, 2022: An interdisciplinary perspective on Greenland’s changing coastal margins. Oceanography 35(3–4):106–117, doi: 10.5670/oceanog.2022.128.
https://doi.org/10.5670/oceanog.2022.128Steiro, V. D., J.C. Ryan, S.W. Cooley, L.C. Smith, B. Dale, A.H. Lynch, and S. Veland, 2021: Changes in sea ice travel conditions in Uummannaq Fjord, Greenland (1985–2019) assessed through remote sensing and transportation accessibility modeling. Polar Geography, 44 (4): 282-296, doi:10.1080/1088937X.2021.1938271.
https://doi.org/10.1080/1088937X.2021.1938271Jones, B.M., L.M. Farquharson, C.A. Baughman, R.M. Buzard, C.D. Arp, G. Grosse, D.L. Bull, F. Guenther, F. Urban, J.L. Kasper, J.M. Frederick, M. Thomas, C. Jones, A. Mota, S. Dallimore, C. Tweedie, C. Maio, D.H. Mann, B. Richmond, A. Gibbs, M. Xiao, T. Sachs, G. Iwahana, M. Kanevskiy, and V.E. Romanovsky, 2018: A decade of high spatiotemporal satellite image observations highlight complexities associated with coastal permafrost bluff erosion in the Arctic. Environmental Research Letters. 13, 115001, doi:10.1088/1748-9326/aae471.
https://doi.org/10.1088/1748-9326/aae471