Publications
Angeler, D., Allen, C. R., Carnaval, A., 2020: Convergence science in the Anthropocene: Navigating the known and unknown. People and Nature 2(1): 96-102, doi:10.1002/pan3.10069.
https://doi.org/10.1002/pan3.10069
Adaptive Capacity and Resilience in the New Arctic: Identifying Pathways to Equitable, Desirable Outcomes for People and Nature Through Convergence
Taylor, M. A., G. Celis, J. D. Ledman, R. Bracho, E. A. Schurr, 2020: Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost Degradation. Journal of Geophysical Research: Biogeosciences 123(9):2695-2710, doi: 10.1029/2018JG004444
https://doi.org/10.1029/2018JG004444
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost Degradation
Mercer, J.L., J. Nymand, L.E. Culler, R. Lynge, S. Lund, B. Gregersen, B. Makens, R.A. Virginia, and K.G. Moore, 2022: Bilateral collaboration between the Greenland (Kalaallit Nunaat) and United States Research Communities - from a vision to everyday practice. Polar Record, vol 58, https://doi.org/10.1017/S0032247422000298.
https://doi.org/10.1017/S0032247422000298Bahramvash, S.S., V.P. Walden, J.W. Hannigan, and D.D. Turner, 2022: Retrievals of Ozone in the Troposphere and Lower Stratosphere Using FTIR Observations Over Greenland. IEEE Transactions on Geoscience and Remote Sensing, vol 60, https://doi.org/10.1109/TGRS.2022.3180626.
https://doi.org/10.1109/TGRS.2022.3180626Stillwell, R.A., R.R. Neely, J.P. Thayer, V.P. Walden, M.D. Shupe, and N.B. Miller, 2019: Radiative Influence of Horizontally Oriented Ice Crystals over Summit, Greenland" Journal of Geophysical Research: Atmospheres, 124 (22), https://doi.org/10.1029/2018JD028963.
https://doi.org/10.1029/2018JD028963Bennartz, R., F. Fell, C. Pettersen, M.D. Shupe, and D. Schuettemeyer, 2019: Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmospheric Chemistry and Physics, 19 (12): 8101–8121, https://doi.org/10.5194/acp-19-8101-2019.
https://doi.org/10.5194/acp-19-8101-2019Gallagher, M.R., M.D. Shupe, and N.B. Miller, 2018: Impact of Atmospheric Circulation on Temperature, Clouds, and Radiation at Summit Station, Greenland, with Self-Organizing Maps. Journal of Climate, 31 (21): 8895–8915, https://doi.org/10.1175/JCLI-D-17-0893.1.
https://doi.org/10.1175/JCLI-D-17-0893.1Cox, C.J., D.C. Noone, M. Berkelhammer, M.D. Shupe, W.D. Neff, N.B. Miller, V.P. Walden, and K. Steffen, 2019: Supercooled liquid fogs over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics, 19 (11): 7467–7485, https://doi.org/10.5194/acp-19-7467-2019.
https://doi.org/10.5194/acp-19-7467-2019Lacour, A., H. Chepfer, N.B. Miller, M.D. Shupe, V. Noel, X. Fettweis, H. Gallee, J.E. Kay, R. Guzman, and J. Cole, 2018: How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet. Journal of Climate , 31 (22): 9293–9312, https://doi.org/10.1175/JCLI-D-18-0023.1.
https://doi.org/10.1175/JCLI-D-18-0023.1Guy, H., I.M. Brooks, K.S. Carslaw, B.J. Murray, V.P. Walden, M.D. Shupe, C. Pettersen, D.D. Turner, C.J. Cox, W.D. Neff, R. Bennartz, and R. R. Neely III, 2021: Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet. Atmospheric Chemistry and Physics , 21 (19): 15351–15374, https://doi.org/10.5194/acp-21-15351-2021.
https://doi.org/10.5194/acp-21-15351-2021Arouf, A., H. Chepfer, T. Vaillant de Guélis, M. Chiriaco, M.D. Shupe, R. Guzman, A. Feofilov, P. Raberanto, T.S. L'Ecuyer, S. Kato, and M.R. Gallagher, 2022: The surface longwave cloud radiative effect derived from space lidar observations. Atmospheric Measurement Techniques , 15(12): 3893–3923, https://doi.org/10.5194/amt-15-3893-2022.
https://doi.org/10.5194/amt-15-3893-2022Pantaleo, A., M.R. Albert, H.T Snyder, S. Doig, T. Oshima, and N.E. Hagelqvist, 2022: Modeling a sustainable energy transition in northern Greenland: Qaanaaq case study. Sustainable Energy Technologies and Assessments, vol 54, 102774, https://doi.org/10.1016/j.seta.2022.102774.
https://doi.org/10.1016/j.seta.2022.102774Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2020: Historical incidence of mid?autumn wind storms in New England" Meteorological Applications , 27 (5), https://doi.org/10.1002/met.1952.
https://doi.org/10.1002/met.1952
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Hazuková, V., B.T. Burpee, I. McFarlane-Wilson, and J.E. Saros, 2021: Under Ice and Early Summer Phytoplankton Dynamics in Two Arctic Lakes with Differing DOC. Journal of Geophysical Research: Biogeosciences, vol 126 , https://doi.org/10.1029/2020JG005972.
https://doi.org/10.1029/2020JG005972
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Simonson, J.M., S.D. Birkel, K.A. Maasch, P.A. Mayewski, B. Lyon, and A.M. Carleton, 2022: Association between recent U.S. northeast precipitation trends and Greenland blocking. International Journal of Climatology, 42 (11): 5682-5693, https://doi.org/10.1002/joc.7555.
https://doi.org/10.1002/joc.7555Daley, K., R. Jamieson, D. Rainham, L.T. Hansen, and S.L. Harper, 2022: Microbial risk assessment and mitigation options for wastewater treatment in Arctic Canada. Microbial Risk Analysis , vol 20, https://doi.org/10.1016/j.mran.2021.100186.
https://doi.org/10.1016/j.mran.2021.100186
Systems Approaches to Understanding and Navigating the New Arctic (SAUNNA)Landers, K., and D. Streletskiy, 2023: (Un)frozen foundations: A study of permafrost construction practices in Russia, Alaska, and Canada. Ambio, 52: 1170–1183, https://doi.org/10.1007/s13280-023-01866-9.
https://doi.org/10.1007/s13280-023-01866-9
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Streletskiy, D.A., S. Clemens, J-P. Lanckman, and N.I. Shiklomanov, 2023: The costs of Arctic infrastructure damages due to permafrost degradation. Environmental Research Letters , v.18, https://doi.org/10.1088/1748-9326/acab18.
https://doi.org/10.1088/1748-9326/acab18
Arctic Cities: Measuring Urban Sustainability in Transition (MUST)Rozmiarek, K. S., et al., 2021: An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments. Atmospheric Measurement Techniques, 14(11): 7045-7067, doi: 10.5194/amt-14-7045-2021.
https://doi.org/10.5194/amt-14-7045-2021
Closing the Water Vapor Exchange Budget Between the Ice Sheets and Free AtmosphereLines, A., J. Elliot, L. R. Ray, 2022: Incipient Immobilization Detection for Lightweight Rovers Operating in Deformable Terrain. Journal of Autonomous Vehicles and Systems 2(3), doi: 10.1115/1.4056408.
https://doi.org/10.1115/1.4056408
Dynamic Vehicle-Terrain Modeling and Control of Lightweight Ground Robots in Snow and SandSpencer, J. L., D. N. Maswell, K. R. Erickson, D. Wall, L. Nicholas-Figueroa, K. A. Pratt,G. V. Shultz, 2022: Cultural Relevance in Chemistry Education: Snow Chemistry and the Iñupiaq Community. Journal of chemical education 99(1):363-372, doi: 10.1021/acs.jche%20med.1c00480.
https://doi.org/doi.org/10.1021/acs.jche%20med.1c00480
Researching apun: Students Using Local, Traditional, and Science Knowledge Bases to Investigate Arctic Snow ProcessesMichaud, A. B., S. Apollonio, 2022: Overwinter oxygen and silicate dynamics in a high Arctic lake (Immerk Lake, Devon Island, Canada). Inland Waters 12(3):418-426, doi: 10.1080/20442041.2022.2063623.
https://doi.org/10.1080/20442041.2022.2063623
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemHudson, J. M., A. B. Michaud, D. Emerson, Y. Chin, 2022: Spatial distribution and biogeochemistry of redox active species in arctic sedimentary porewaters and seeps. Environmental Science: Processes & Impacts 24(3):426-438, doi: 10.1039/D1EM00505G.
https://doi.org/10.1039/D1EM00505G
Interactions of the Microbial Iron and Methane Cycles in the Tundra EcosystemMiller, A. C., T. Ravens, 2022: Assessing Coastal Road Flood Risk in Arctic Alaska, a Case Study from Hooper Bay. Journal of Marine Science and Engineering 10(3), doi: 10.3390/jmse10030406.
https://doi.org/10.3390/jmse10030406
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchBerry, K., R. D. Horan, D. Finnoff, R. Pompa, P. Dasak, 2022: Investing to Both Prevent and Prepare for COVID-XX. EcoHealth 19(1):114-123, doi: 10.1007/s10393-022-01576-w.
https://doi.org/10.1007/s10393-022-01576-w
ANCHOR - Arctic Network for Coastal Community Hazards, Observations, and Integrated ResearchDelwiche, K. B., 2020: FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth system science data, doi: 10.5194.
https://doi.org/10.5194
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationVirkkala, A. and Coauthors, 2021: Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology 27(17):4040-4059, doi: 10.1111/gcb.15659.
https://doi.org/10.1111/gcb.15659
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationPihl, E. and Coauthors, 2021: Ten new insights in climate science 2020 – a horizon scan. Global Sustainability 4, doi: 10.1017/sus.2021.2.
https://doi.org/10.1017/sus.2021.2
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationGarnello, A., S. Marchenko, D. Nicolsky, V. Romanovsky, J. Ledman, G. Celis, C. Schadel, Y. Luo, E. A. Schuur, 2021: Projecting Permafrost Thaw of Sub‐Arctic Tundra With a Thermodynamic Model Calibrated to Site Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006218.
https://doi.org/10.1029/2020JG006218
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationMauritz, M., E. Pegoraro, K. Ogle, C. Ebert, E. Schurr, 2021: Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006000.
https://doi.org/10.1029/2020JG006000
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationSchurr, E. A. G. and Coauthors, 2021: Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the Atmosphere Over 15 Years of Measurements. Journal of Geophysical Research: Biogeosciences 126(6), doi: 10.1029/2020JG006044.
https://doi.org/10.1029/2020JG006044
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationNatali, S. M. and Coauthors, 2019: Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change 9(11):852-857, doi: 10.1038/s41558-019-0592-8.
https://doi.org/10.1038/s41558-019-0592-8
The Arctic Carbon and Climate (ACCLIMATE) Observatory: Tundra Ecosystem Carbon Balance and Old Carbon Loss as a Consequence of Permafrost DegradationAustermann, J., M.J. Hoggard, K. Latychev, F.D. Richards, and J.X. Mitrovica, 2021: The effect of lateral variations in Earth structure on Last Interglacial sea level. Geophysical Journal International, 227(3): 1938–1960, doi:10.1093/gji/ggab289.
https://doi.org/10.1093/gji/ggab289Straneo, F., D.A. Slater, C. Bouchard, M.R. Cape, M. Carey, L. Ciannelli, J. Holte, P. Matrai, K. Laidre, C. Little, L. Meire, H. Seroussi, and M. Vernet, 2022: An interdisciplinary perspective on Greenland’s changing coastal margins. Oceanography 35(3–4):106–117, doi: 10.5670/oceanog.2022.128.
https://doi.org/10.5670/oceanog.2022.128Steiro, V. D., J.C. Ryan, S.W. Cooley, L.C. Smith, B. Dale, A.H. Lynch, and S. Veland, 2021: Changes in sea ice travel conditions in Uummannaq Fjord, Greenland (1985–2019) assessed through remote sensing and transportation accessibility modeling. Polar Geography, 44 (4): 282-296, doi:10.1080/1088937X.2021.1938271.
https://doi.org/10.1080/1088937X.2021.1938271Jones, B.M., L.M. Farquharson, C.A. Baughman, R.M. Buzard, C.D. Arp, G. Grosse, D.L. Bull, F. Guenther, F. Urban, J.L. Kasper, J.M. Frederick, M. Thomas, C. Jones, A. Mota, S. Dallimore, C. Tweedie, C. Maio, D.H. Mann, B. Richmond, A. Gibbs, M. Xiao, T. Sachs, G. Iwahana, M. Kanevskiy, and V.E. Romanovsky, 2018: A decade of high spatiotemporal satellite image observations highlight complexities associated with coastal permafrost bluff erosion in the Arctic. Environmental Research Letters. 13, 115001, doi:10.1088/1748-9326/aae471.
https://doi.org/10.1088/1748-9326/aae471