Alaska

Soundscape ecology to assess environmental and anthropogenic controls on wildlife behavior

Across North America, Arctic and boreal regions have been warming at a rate two to three times higher than the global average. At the same time, human development continues to encroach and intensify, primarily due to demand for natural resources, such as oil and gas. The vast and remote nature of Arctic-boreal regions typify their landscapes, environment, wildlife, and people, but their size and isolation also make it difficult to study how their ecosystems are changing.

Atmospheric Measurements from Unmanned Aircraft during SODA - Deployment of miniFlux and Initial Data Analysis

Understanding the temperature structure of the upper ocean in the Arctic is very important for properly simulating the formation and melt of sea ice in climate and weather models. The presence (or absence) is important for a variety of activities, including shipping, energy exploration, and hunting by Native populations. Therefore, forecasting the presence of ice at shorter timescales is critically needed.

The Transition Zone of Upper Permafrost: The Frontline for Permafrost Changes across Climate and Landscape Gradients

Permanently frozen soils, or permafrost, often contain large amounts of ground ice, which make it vulnerable to climate change and human activities. These soils are protected from melting by a surface layer which thaws in summer and refreezes in winter, and a near-surface layer, termed the transition zone. This transition zone, which develops through complex interactions between the environment and permafrost, controls permafrost resilience to ground surface subsidence (thermokarst).